PETROLEUM INVESTMENT STRATEGY
COMPREHENSIVE REPORT

PNGE 295: Petroleum Engineering Design
Petroleum & Natural Gas Engineering
West Virginia University
Shahab Mohaghegh, Ph.D.

APRIL 27, 2000

WESTERN PANDA CORPORATION

CARRIE GODDARD
BRANDON BLAYLOCK
KHALIFA KHALAF
RICARDO TALAVERA
Western Panda Corporation has completed a petroleum investment strategy study to evaluate the investment opportunities between two wells. The first well, a gas well located in Wyoming County, West Virginia, will be referred to as the Red Panda well. The second well, an oil well located in Kern County, California, will be referred to as the Giant Panda well.

The casing design of the Red Panda well in West Virginia consists of 4 1/2-inch, J-55, 9.5 pounds per foot production casing, 8 5/8-inch, H-40, 28 pounds per foot intermediate casing, and 11 3/4-inch, H-40, 32.3 pounds per foot surface casing. A perforated, multiple-zone completion would be most desirable. The Ravenscliff Sand should be perforated from 1,538 feet to 1,543 feet, the Big Lime from 2,497 feet to 2,503 feet, and the Berea Sand from 3,346 feet to 3,360 feet. The casing design of the Giant Panda well in California consists of 7-inch, J-55, 23 pounds per foot production casing and 9 5/8-inch, H-40, 32.3 pounds per foot surface casing. A perforated, multiple-zone completion would be most desirable. From examination of the log provided, the Second Vedder sand should be perforated from 4,652 feet to 4,660 feet. The Third Vedder sand should be perforated in two separate intervals, 4,790 feet to 4,800 feet and 4,810 feet to 4,835 feet.

Interpretation of available well logs facilitated the estimation of original oil and gas in place on a per acre basis for both wells using the volumetric method. The Red Panda well was found to have an original gas in place of 12,083 MCF/acre. The productive zones have an average porosity of 10.1% and an average water saturation of 28%. The Giant Panda well will produce from a solution gas drive reservoir with an original oil in place of 80,616 STB/acre. The productive zones have an average porosity of 34% and an average water saturation of 27%.

From analysis of available well test data, initial formation pressure, permeability, skin factor, and flow efficiency were estimated. The well test analysis for the Red Panda gas well utilized the data that was made available from a build-up test. The results obtained were initial reservoir pressure of 6511 psi, permeability of 0.082 md, skin factor of 14.79, and flow efficiency of 34 percent. The well test analysis for the Giant Panda oil well utilized the data that was made available from a drawdown test. The initial reservoir pressure was found to be 2400 psi, with a permeability of 11.83 md, skin factor of 0.56, and flow efficiency of 95 percent.

The resulting maximum constant rate for the Red Panda well that can be maintained for seven years is 160.8 MCF/D. At the end of seven years of production with this flow rate, reservoir pressure is 248 psia, well-flowing pressure is 100 psia (abandonment pressure), wellhead
pressure is 85 psia. The cumulative gas produced is 415.5 MMCF. Likewise, the maximum oil production schedule for the Giant Panda well will have an initial flow rate of 245 STB/D. This flow rate will result in a cumulative production of 422,000 STB of oil and 762 MMCF of gas at the end of 7 years reaching the abandonment pressure. The final flow rate will be 37 STB/D.

Monte Carlo simulation was used in order to minimize the uncertainty of oil and gas prices, operation costs and the days required for drilling and completion. Uniform distributions were used for oil price (median value of $20/BBL) and gas price ($3/MCF). Triangular distributions were used for operating costs (median values of $0.75/BBL and $0.25/MCF). Discrete probability distributions were used for the days required for drilling and completion, with both skewed in a manner that allows for possible problems that may increase drilling or completion time. The initial investment for the Red Panda well is slightly under $90,000. The net cash flow will be approximately $1 million, with net present values of $860,000 and $515,000 at the interest rates of 5% and 20%, respectively. The rate of return for the Red Panda well is around 180%. Likewise, the initial investment for the Giant Panda well is slightly over $95,000. The net cash flow, over $10 million, is significantly higher than the Red Panda well. At interest rates of 5% and 20%, the net present values are $9.3 million and $7.5 million, respectively. The rate of return for the Giant Panda well is over 10,000%.

Western Panda Corporation feels very confident in the results obtained from this study. It has been shown that the Giant Panda well, an oil well located in California, will far outperform the Red Panda well, a gas well located in West Virginia. The Giant Panda well is a very certain investment that will generate a significant amount of money at all normal interest rates. Unless interest rates skyrocket to over 10,000%, the Giant Panda well is sure to make money for the company. It is therefore the indisputable and absolute recommendation of Western Panda Corporation that the company proceed forward with the Giant Panda well as a ‘GO’ and the Red Panda well as a ‘NO GO’.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROBLEM STATEMENT</td>
<td>1</td>
</tr>
<tr>
<td>INTRODUCTION</td>
<td>2</td>
</tr>
<tr>
<td>WELL INFORMATION</td>
<td>2</td>
</tr>
<tr>
<td>CASING DESIGN, BIT SELECTION, AND COMPLETION</td>
<td>3</td>
</tr>
<tr>
<td>WELL LOG INTERPRETATION AND RESERVE ESTIMATION</td>
<td>5</td>
</tr>
<tr>
<td>Well Logging Tools</td>
<td>5</td>
</tr>
<tr>
<td>Well Setup</td>
<td>5</td>
</tr>
<tr>
<td>Logging Unit</td>
<td>6</td>
</tr>
<tr>
<td>Hoisting Equipment</td>
<td>6</td>
</tr>
<tr>
<td>Cable Construction</td>
<td>6</td>
</tr>
<tr>
<td>Types of Logs</td>
<td>7</td>
</tr>
<tr>
<td>Density Logs</td>
<td>7</td>
</tr>
<tr>
<td>Neutron Logs</td>
<td>7</td>
</tr>
<tr>
<td>Induction Logs</td>
<td>8</td>
</tr>
<tr>
<td>WELL TEST ANALYSIS</td>
<td>10</td>
</tr>
<tr>
<td>Buildup Test Advantages</td>
<td>10</td>
</tr>
<tr>
<td>Buildup Test Disadvantages</td>
<td>10</td>
</tr>
<tr>
<td>Buildup Test Analysis</td>
<td>10</td>
</tr>
<tr>
<td>P^2 Method</td>
<td>11</td>
</tr>
<tr>
<td>Real Gas Pseudo-Pressure Method, $m(P)$</td>
<td>11</td>
</tr>
<tr>
<td>RESERVOIR PERFORMANCE PREDICTION</td>
<td>14</td>
</tr>
<tr>
<td>Reservoir Fluid Properties</td>
<td>14</td>
</tr>
<tr>
<td>Gas Reservoirs</td>
<td>15</td>
</tr>
<tr>
<td>Solution-Gas Drive Reservoirs</td>
<td>16</td>
</tr>
<tr>
<td>MONTE CARLO SIMULATION AND ECONOMIC EVALUATION</td>
<td>17</td>
</tr>
<tr>
<td>Uncertainty</td>
<td>17</td>
</tr>
<tr>
<td>Uniform Distribution</td>
<td>17</td>
</tr>
<tr>
<td>Triangular Distribution</td>
<td>18</td>
</tr>
<tr>
<td>Discrete Probability Distribution</td>
<td>19</td>
</tr>
<tr>
<td>Economics</td>
<td>19</td>
</tr>
<tr>
<td>METHODOLOGY</td>
<td>20</td>
</tr>
<tr>
<td>CASING DESIGN, BIT SELECTION, AND COMPLETION</td>
<td>20</td>
</tr>
<tr>
<td>Burst Design</td>
<td>21</td>
</tr>
<tr>
<td>Collapse Design</td>
<td>22</td>
</tr>
<tr>
<td>Tension Design</td>
<td>22</td>
</tr>
<tr>
<td>Bit Selection</td>
<td>23</td>
</tr>
<tr>
<td>Completion Type</td>
<td>23</td>
</tr>
<tr>
<td>WELL LOG INTERPRETATION AND RESERVE ESTIMATION</td>
<td>24</td>
</tr>
<tr>
<td>Red Panda Well</td>
<td>24</td>
</tr>
<tr>
<td>Giant Panda Well</td>
<td>25</td>
</tr>
<tr>
<td>WELL TEST ANALYSIS</td>
<td>27</td>
</tr>
<tr>
<td>Red Panda Well</td>
<td>27</td>
</tr>
<tr>
<td>Giant Panda</td>
<td>33</td>
</tr>
<tr>
<td>RESERVOIR PERFORMANCE PREDICTION</td>
<td>35</td>
</tr>
</tbody>
</table>
PROBLEM STATEMENT

Western Panda Corporation has been requested to evaluate the investment opportunities between two wells, the first of which is a gas well located in Wyoming County, West Virginia, the second, an oil well located in Kern County, California. Throughout this study, the gas well in West Virginia will be referred to as the Red Panda well, while the oil well in California will be referred to as the Giant Panda well. Management has indicated that it has only enough resources to invest in one of the two wells. Therefore, a recommendation must be made to management on this investment opportunity. Throughout this quarter, Western Panda Corporation will conduct a thorough examination of the two proposed wells, which will include the following:

1. **Casing Design, Bit Selection, and Completion:**
 A casing program must be designed for both wells. Bits should be selected, with respect to the desired casing program, in order to drill these wells. Completion information should also be determined and justified.

2. **Well Log Interpretation and Reserve Estimation:**
 An appropriate log suite, which contains induction, neutron, density, and gamma ray logs, must be obtained and interpreted. Using volumetric methods, an accurate estimate of petroleum reserves on a per acre basis must then be determined.

3. **Well Test Analysis:**
 The following parameters are to be calculated upon completion of the analysis of the well test data: initial formation pressure, permeability, skin factor, and flow efficiency.

4. **Reservoir Performance Prediction:**
 Correlations must be developed in order to predict z-factor and viscosity for the reservoir fluid at varying pressures and temperatures. In addition, pressure profiles will be forecasted for the next seven years for each well based on the predicted production schedule. For the gas well, this production schedule will consist of the maximum rate that can be maintained constant throughout the seven-year life of the reservoir. For the oil well, the production schedule will be the maximum flow rate that can be maintained for seven years. Since this is a solution-gas drive reservoir, this rate will not be constant.

5. **Monte Carlo Simulation and Economic Evaluation:**
 In order to minimize uncertainty, Monte Carlo simulation was utilized. Uniform distributions were used for oil and gas price, triangular distributions for operating costs, and discrete probability for the days required for drilling and completion. Net present value and rate of return were then determined for both wells.

At the conclusion of this study, Western Panda Corporation will provide a recommendation to management as to which well will be the more profitable investment.
INTRODUCTION

WELL INFORMATION

The first well is the Red Panda well in the Clear Fork Field. It is located near Baileysville, West Virginia in Wyoming County. A state map of West Virginia can be seen in the Red Panda Appendix as Figure 1. In drilling this well, it is expected to encounter coal seams along with several fresh water streams. Some operating concerns with the Red Panda well may include climate and precipitation, particularly in frigid temperatures and/or heavy amounts of snow or rainfall. This well is located in a rural area, which may make it difficult to reach the well site. Furthermore, the surface rights belong to a local farmer rather than the company, which may present conflict. The Red Panda well is expected to produce only gas.

The second well is the Giant Panda well in the Kern River Field. It is located just north of Bakersfield, California in Kern County. A California state map and a detailed map of the Kern River Field can be seen in the Giant Panda Appendix as Figure 1. This field is a very old one and celebrated its 100th year of production last year. It is located in the San Joaquin Valley, home of much agriculture. In fact, many crops such as carrots, alfalfa, almonds, and oranges are grown very close to the field. The aqueduct, supplying much of the irrigation for these crops, runs directly through the Kern River Field. This area is also home to many endangered plants and animals, such as kit foxes, jackrabbits, rattlesnakes, and several species of cactus. Because of these circumstances, many safety and environmental precautions must be followed in the operation of the wells and facilities. This area is also subject to earthquakes due to its close proximity to the San Andreas Fault. The Kern River field consists of non-marine sediments of the Plio-Pleistocene Kern River formation. The beds strike approximately N-45 degrees-W and dip about 3 to 5 degrees-SW. They were deposited in a large braided stream/alluvial complex fed by the ancestral Kern River. Because of local non-deposition or erosion of the shales, separately named sand units may locally form a single sand package where the shale unit is missing. The Giant Panda well is expected to produce both oil and gas.
CASING DESIGN, BIT SELECTION, AND COMPLETION

Casing performs many vital functions in the drilling and completion of a well. First and foremost, it prevents collapse of the borehole while drilling. It also hydraulically separates the drilling or completion fluid from the formations and the formation fluid. It helps to minimize damage to both the well and the formations. Casing provides an excellent flow channel for the drilling fluid to reach the surface. It also aids blowout preventers to safely control formation pressure. Finally, properly cemented casing may be selectively perforated for communication with given formations that are of interest.

Of course, before casing may be set, the hole must first be drilled with the proper bit. A large variety of rotary drilling bits are available, but rolling cutter bits will be emphasized for this study. Rolling cutter bits have two or more cones containing the cutting elements, which rotate about the axis of the cone as the bit is rotated at the bottom of the hole. Of this kind of bit, the three-cone rolling cutter bit is by far the most common used today. It is available in an assortment of tooth design and bearing types, which makes it useful in a wide variety of formations. The most pronounced limitation that an engineer faces in bit selection is the fact that the bit must fit inside the borehole or casing. A three-digit code has been adopted in the designation and classification of bits. The first number is called the bit series number. The second digit is called the type number. The third number refers to the bit design features.

There are two chief completion types, the first of which are open-hole completions. An open-hole completion exists when the casing is set above the producing zone. There are many advantages with this type of completion. It is adaptable to special drilling techniques used to minimize formation damage or prevent lost circulation into the producing formation. With a gravel pack, this completion is an excellent sand control method, particularly where productivity is important. With open-hole completions, there is no perforating expense and log interpretation is not critical. Furthermore, open-hole completions can easily be deepened or converted to a liner or perforated completion. There are also several limitations to this type of completion. Excessive gas or water production is very difficult to control. Selective fracturing or acidizing is more difficult. For open-hole completions, the casing is set before the pay zone is drilled or logged. Open-hole completions also require more rig time during completion.

The second main type of completion is the perforated completion. This type of completion exists when casing is cemented through the producing zone(s) and is later perforated. This, too, has many advantages. Excessive gas and/or water production can be controlled more easily. Perforated completions can be selectively stimulated. Logs and formation samples are available.
to assist in the decision to set casing or abandon. Perforated completions can also be easily deepened. This type of completion will control most sands and is adaptable to special sand control techniques. It is also adaptable to multiple completion techniques. Minimum rig time is required upon completion. Perforated casing also has its limitations. The cost of perforating thick pay zones may be significant. It is not adaptable to special drilling techniques used to minimize formation damage. Finally, log interpretation is sometimes critical in order not to miss commercial sands, yet avoid perforating sub-marginal zones.
WELL LOG INTERPRETATION AND RESERVE ESTIMATION

Petrophysical characteristics of the subsurface can be estimated using information from geophysical logs. The accuracy of the estimate depends on the number of the logs available. While the logging tools are being pulled up in the well, logging equipment sensors are measuring certain physical properties of the formations encountered. These measurements are recorded on long strips of paper and digitally on magnetic tapes. Together they make up what are referred to as well logs. Many different logs can be run today. Some of the measured properties are resistivity or conductivity of the rocks, intensity of natural radioactivity, electrical potentials existing in the well, and velocity of sound waves.

The determination of the presence and amount of hydrocarbons in both wells after all measurements have been collected and the log has been analyzed can now be done. It is important to determine various characteristics such as permeability and the types of minerals present in the formations of interest.

WELL LOGGING TOOLS

Mostly all onshore well logging operations utilize similar surface equipment systems for a wide variety of downhole tools. Variations are present between these and offshore systems, which consist of a permanently mounted equipment assembly. In each case, the same surface equipment can be used for any electrically operated, wire-line tool by changing the control panel connections in the logging unit.

WELL SETUP

There are three basic well setups used, depending on the wellsite and type of downhole tool. The first setup is when the drilling rig is still on location. From the logging unit the cable is threaded through the lower sheave, which is anchored to the rig floor, and up over the upper sheave hanging from a strain gauge (weight indicator) which is coupled to the traveling block. The second and third setups are when the drilling rig has been removed from the wellsite. A mast is required to control large, heavy tools. Commonly a portable hydraulic mast is used for this purpose. Lastly, setting up a single sheave at the wellhead can run a small easy handled downhole tool into the hole.
LOGGING UNIT

The logging unit is the control center for all well logging operations. A unit can be a truck, barge, or platform that is mounted for offshore operations. It contains a control panel for monitoring all logging activities. The activities can range from moving the tool to recording data. More recently, sophisticated computers have enhanced the ease with which the engineer may operate the logging procedure.

HOISTING EQUIPMENT

It is required for well logging to have hosting equipment to operate. That includes a power source, hoisting drum, and power supply. The power supply, which operates the hoisting drum, is a variable-displacement hydraulic pump with a reversible hydraulic motor either electrically or gasoline operated.

CABLE CONSTRUCTION

Logging cable consists of seven rubber insulated, symmetrically spaced, stranded copper wires with a cloth braid wrapping separating the conductors from the outer steel jackets. A diagram of this can be seen as Figure 1 in the General Appendix. Usually, a seven-conductor cable is used for electrical logging operations, and a one or three-conductor cable for perforating. The number of conductors depends on the number of applications on the downhole tool.

The main components of a typical (downhole) logging tool are as follows:
Sonde
Cartridge
Head
Bridle
Weak Point
Wire Line
Drum
Brushes, Panels and Recorder

Types of Logs

Density Logs

Density logs are primarily used to determine porosity. Other uses include identification of minerals in evaporate deposits, detection of gas, determination of hydrocarbon density, evaluation of shaly sands and complex lithologies, determinations of oil-shale yield, calculation of overburden pressure and rock mechanical properties.

Principle:

A radioactive source, applied to the borehole wall in a shielded sidewall skid, emits medium-energy gamma rays into the formations. These gamma rays may be thought of as high-velocity particles that collide with the electrons in the formation. At each collision a gamma ray loses some, but not all, of its energy to the electron, and then continues with diminished energy. This type of interaction is known as Compton scattering. The scattered gamma rays reaching the detector, at a fixed distance from the source, are counted as an indication of formation density.

The number of Compton-scattering collisions is related directly to the number of electrons in the formation. Consequently, the response of the density tool is determined essentially by the electron density (number of electrons per cubic centimeter) of the formation. Electron density is related to the true bulk density, ρ_b, which, in turn, depends on the density of the rock matrix material, the formation porosity, and the density of the fluids filling the pores.

Neutron Logs

Neutron logs are used principally for delineation of porous formations and determination of their porosity. They respond primarily to the amount of hydrocarbon in the formation. Thus, in clean formation whose pores are filled with water or oil, the neutron log reflects the amount of liquid-filled porosity.

Comparing the neutron log with another porosity log or a core analysis can often identify gas zones. A combination of the neutron log with one or more porosity logs yields even more accurate porosity values and lithology identification.
Principle:

Neutrons are electrically neutral, each having a mass almost identical to the mass of a hydrogen atom. High-energy (fast) neutrons are continuously emitted from a radioactive source in the sonde. These neutrons collide with nuclei of the formation materials in what may be thought of as elastic “billiard-ball” collisions. With each collision, the neutron loses some of its energy.

The amount of energy lost per collision depends on the relative mass of the nucleus with which the neutron collides. The greater energy loss occurs when the neutron strikes a nucleus. Collisions with which the neutron strikes a nucleus of practically equal mass – i.e., a hydrogen nucleus. Collisions with heavy nuclei do not slow the neutron very much. Thus, the slowing of neutrons depends largely on the amount of hydrogen in the formation.

Within a few microseconds the neutrons have been slowed by successive collisions to thermal velocities, corresponding to energies of around 0.025 eV. They then diffuse randomly, without losing more energy, until they are captured by the nuclei of atoms such as chlorine, hydrogen, or silicon.

The capturing nucleus becomes intense and emits a high-energy gamma ray of capture. Depending on the type of neutron tool, either these captured gamma rays or the neutrons themselves are counted by a detector in the sonde.

When the hydrogen concentration of the material surrounding the neutron source is large, most of the neutrons are slowed and captured within a short distance of the source. On the contrary, if the hydrogen concentration is small, the neutrons travel farther from the source before being captured. Accordingly, the counting rate at the detector increases for decreased hydrogen concentration, and vice versa.

INDUCTION LOGS

The induction-logging tool was originally developed to measure formation resistivity in boreholes containing oil-based muds and in air-drilled boreholes. Electrode devices did not work in the nonconductive muds, and attempts to use wall-scratchier electrodes were unsatisfactory.

Experience soon demonstrated that the induction log had many advantages over the conventional ES log when used for logging wells drilled with water-base muds. Designed for deep investigation, induction logs can be focused in order to minimize the influences of the borehole, the surrounding formations, and the invaded zone.
Principle:

Today’s induction tools have many transmitter and receiver coils. However, the principle can be understood by considering a sonde with only one transmitter coil and one receiver coil.

A high-frequency alternating current of constant intensity is sent through a transmitter coil. The alternating magnetic field creates induction currents in the formation surrounding the borehole. These currents flow in circular ground loops coaxial with the transmitter coil and create, in turn, a magnetic field that induces a voltage in the receiver coil.

Because the alternating current in the transmitter coil is of constant frequency and amplitude, the ground loop currents are directly proportional to the formation conductivity. The voltage induced in the receiver coil is proportional to the ground loop currents and, therefore, to the conductivity of the formation. There is also a direct coupling between the transmitter and receiver coils. Using “bucking” coils eliminates the signal originating from this coupling.

The induction tool works best when the borehole fluid is an insulator—even air or gas. The tool also works well when the borehole contains conductive mud unless the mud is too salty, the formations are too resistive, or the borehole diameter is too large.
Well Test Analysis

The pressure buildup test is the most commonly used pressure transient test. This test requires that a producing well be shut in and the resulting increase in formation face pressure be measured as a function of shut-in time. It is assumed that the test well was produced at constant formation face rate for a time prior to being shut in. Shut-in time is denoted by the symbol Δt.

The primary objectives are to show how the pressure buildup test can be designed and analyzed to evaluate permeability, formation damage, average reservoir pressure, and flow efficiency. Common problem of interpretation such as wellbore storage, and boundary effects will be discussed.

Buildup Test Advantages

The problem of rate control, which is the greatest disadvantage of flowing tests, is eliminated since the well is shut in during the test. Wellbore storage can be reduced, or eliminated, by using a bottomhole shut-in device. Average pressure within the drainage volume of the shut-in period. The test can be used on wells with certain types of artificial life where subsurface pressure measurements would be difficult to obtain under flowing conditions.

Buildup Test Disadvantages

The first disadvantage is that loss of production occurs during the test. Redistribution of fluids in the wellbore during shut-in can make analysis of some data difficult, or impossible, if a bottomhole shut-in device is not used. Well can sand up, or experience other mechanical problem, during shut-in. The buildup test requires a reasonably constant rate for a period of time prior to shut-in. The pressure buildup test is a two-rate test; accordingly, superposition methods must be used to evaluate the data.

Buildup Test Analysis

A pressure buildup test is the simplest test that can be run on a gas well. If the effects of wellbore storage can be determined, much useful information can be obtained. This information includes permeability, apparent skin factor, average reservoir pressure, and flow efficiency. Generally, there are several methods of analysis that can be used to analyze the buildup test data.
P² Method

This method is subjected to three major limitations. It is assumed that pressure gradient around the wellbore of the test well are small. Laminar flow is assumed, where most gas wells experience turbulent flow to some degree. The μZ product is assumed to be constant. This effectively limits the application of this method to pressures less than 2000 psia. Therefore, this method of analysis is not going to be used to analyze the build-up data of the two wells.

Real Gas Pseudo-Pressure Method, m(P)

In 1966, Al-Hussainy introduced the concept of the real gas pseudo-pressure, $m(p)$. This function is defined as:

$$m(p) = 2 \int \frac{p}{\mu Z} \, dp, \text{ psi}^2 / \text{cp}$$

where,

$$\mu Z \text{ are functions only of pressure}$$

Since μ and z are integrated as a function of pressure, there are no limits on the pressure range. It is also important to observe that it does not contain the limitation that pressure gradients must be small.

In this project, the real gas pseudo-pressure method would be used to analyze the buildup test data. Therefore, a computer program is developed in visual basic to convert pressure to pseudo-pressure.

The relationship between P and $m(P)$ can be obtained using the following procedure:

1. Determine viscosity and z as function of pressure for the entire range of pressures involved in the test analysis. Pressure increments of 50-100 psi are normally adequate.
2. Compute $2p/\Delta z$ for each pressure in step 1.
3. Compute $m(P)$ as a function of pressure using numerical integration. In order to compute the value of $m(P)$ at some pressure P_1, it is necessary to compute the area under the curve between P_1 and P_2. This area, A_1 is equal to

$$A_1 = \int 2/\mu Z \, dp$$

If the pressure increment, $P_1 - P_2$, is sufficiently small, the area can be assumed to be a trapezoid. The values of $m(P)$ at other pressure can be determined in a similar manner.
Or for computing the pseudo-pressure we can use the formula:
\[
\Sigma \left[\frac{2P}{\mu^\Delta z} \right]_{av} \Delta P
\]

The deviation z factor was computed with the formula using a trial and error procedure:
\[
Z = 1 + \left[A1 + A2/T_{pr} + A3/T_{pr}^3 + A4/T_{pr}^4 + A5/T_{pr}^8 \right] \rho + \left[A6 + A7/T_{pr} + A8/T_{pr}^2 \right] \rho^3 - A9[A7T_{pr} + A8/T_{pr}^2] \rho^5 + A10(1 + A11 \rho^2) (\rho^2/T_{pr}^3) \exp(-A11 \rho^2)
\]

Where,
\[
\rho = 0.27\left[P_{pr}/(zT_{pr})\right] \text{ and }
\]
\[
A1 = 0.3265 \quad A2 = -1.0700 \quad A3 = -0.5339 \quad A4 = 0.01569 \quad A5 = 0.1844 \quad A9 = 0.5475 \quad A10 = 0.6134 \quad A11 = 0.7201
\]

Tpc and Ppc are calculated with the formula:
\[
T_{pc} = 170.491 + 307.344Gg
\]
\[
P_{pc} = 709.604 - 58.718Gg
\]

Pseudoreduced Temperature and Pseudoreduced Pressure are calculated with formula:
\[
T_{pr} = T/T_{pc}
\]
\[
P_{pr} = P/P_{pc}
\]

Gas viscosity was calculated with the correction:
For \(T_{pr} = 1.5 \) \(\mu = 34E^{-5} (T_{pr})^{8/9}/x_{m} \)
For \(T_{pr} = 1.5 \) \(\mu = 166.8E^{-5}[0.1338 T_{pr} - 0.0832]^{5/9}/x_{m} \)

\[
X_{m} = 5.4402 (T_{pc})^{1/6}/(M_{wa})^{1/2}/(p_{pc})^{3/2}
\]

\[
\mu_{g} = \mu / 10.8E^{-5}[\exp(91.439 \rho)] - \exp(-1.111(\rho)^{1.888}) / x_{m}
\]

Where:
\[
\mu_{g} = \text{gas viscosity at reservoir pressure and temperature}
\]
\[
\mu = \text{gas viscosity at atmospheric pressure and temperature, cp}
\]
\[
\rho_{\Delta} = \text{reduced gas density}
\]
Next step was to calculate pseudo-time, \(\tau_a \)
\[
\tau_a = \sum \frac{(t_i-t_{i-1})}{(p_i-p_{i-1})(p_i-1)}
\]
where,
\[
\tau_p = S \left[\frac{1}{v^*c_g} \right] + \left(\frac{1}{v^*c_g} \right)_{i-1}(P_i-P_{i-1})/2
\]

Gas compressibility was calculated with the relation:
\[
C_{gr} = \frac{1}{ppr} - 0.27 / z T_{pr} \left[\frac{dz/d_r}{(1 + dz/d_r)} \right]
\]
Where,
\[
\frac{Dz}{d_r} = 1+[A1+A2/T_{pr} + A3/T_{pr}^3 + A4/T_{pr} + A5/T_{pr}^5]_r
\]
\[
+[A6+A7/T_{pr}+A8/T_{pr}^2]_r^2-A9[A7T_{pr}+A8/T_{pr}^2]_r^3+A10(1+A11_r^2)(r^2/T_{pr}^3) \exp \left(-A11_r^2\right)
\]
\[
c_g = c_{gr} / ppc
\]
A1- A11 are presented above.

The delta pseudo-pressure \(m(p) \) was calculated with the formula:
\[
Dm[p] = m[P_{ws}] - m[P_{wf}]
\]
RESERVOIR PERFORMANCE PREDICTION

RESERVOIR FLUID PROPERTIES

The z-factor (or compressibility factor) is a correction factor used in the ideal gas law to compensate for the behavior of real gases. It is the ratio of the volume actually occupied by a gas at a given temperature and pressure to the volume an ideal gas would occupy at the same temperature and pressure. The Law of Corresponding States says “all pure gases have the same z-factor at the same values of reduced pressure and reduced temperature.” This law has been extended to apply to mixtures of closely related gases. The z-factor varies with changes in gas composition, temperature, and pressure and must be determined experimentally. For use in z-factor determination, the accepted standard of the industry is the Standing and Katz chart, which can be seen in the General Appendix as Figure 2.

The viscosity (or coefficient of viscosity) of a gas measures the resistance to flow put forth by a fluid. It is also called dynamic viscosity and is defined as the kinematic viscosity divided by the density of the fluid. Its units are usually given in centipoise. Gas viscosity decreases as reservoir pressure decreases. When the composition of a gas mixture is known and the viscosities of the components are known, the viscosity of the gas mixture can be found, as is indicated by the Law of Corresponding States. However, in most cases the composition is not available and correlations must be utilized. Typically, Figure 3 in the General Appendix is used to find the viscosity of the gas at atmospheric pressure. Then, the viscosity ratio is read from Figure 4 in the General Appendix. These two values are multiplied to obtain the viscosity of the gas.

The viscosity of oil is similar to that of gas. It is also a measure of the resistance to flow exerted by a fluid and typically has units of centipoise. At pressures above the bubble point, the viscosity of oil decreases almost linearly as pressure decreases. However, as reservoir pressure decreases below the bubble point, the liquid composition changes as gas evolves. Therefore, below the bubble point, the viscosity greatly increases as pressure decreases. For black oils, a combination of two charts is generally used to find the oil viscosity. The first, Figure 5 in the General Appendix, is used to determine the dead oil viscosity. This value is then used to enter into Figure 6 in the General Appendix to obtain the oil viscosity.
Gas Reservoirs

Gas flow through porous media is given by the partial differential equation that can be obtain by combining the continuity equation, Darcy’s law, and equations of state. As can be seen from the partial differential equation for gases (for either horizontal flow or radial flow) compared with the partial differential equations for fluids, a new term appears \[\frac{P}{\mu z} \]. This is due to the gas deviation factor and the higher compressibility of gases compared to fluids, both of them being functions of pressure. In order to solve the equations, a new term called pseudo-pressure was defined, which results in increased accuracy. Mathematically, it is defined as the integral of \[\frac{P}{\mu z} \] between two pressures as seen below:

The most important advantage of this method is that it is applicable to all pressure ranges. For a particular gas gravity and reservoir temperature, the relationship between \(P \) and \(m(P) \) can be obtained using the following procedure:

\[
m(P) = 2 \int \frac{P}{\mu z} dP
\]

Determine \(\mu \) and \(z \) as functions of pressure for the entire range of pressures involved in the test analysis. Pressure increments of one to ten pounds per square inch are normally adequate. Then, compute the following for each pressure in Step 1:

\[
\frac{2P}{\mu z}
\]

Compute \(m(P) \) as a function of pressure using numerical integration. In order to compute the value of \(m(P) \) at some pressure \(P_1 \), it is necessary to compute the area under the curve between \(P_b \) and \(P_1 \). This area, \(A_i \) is equal to the following:

\[
m(P) = \int \frac{2P}{\mu z} dP
\]

If the pressure increment, \(P_1 - P_b \) is sufficiently small, the area can be assumed to be a trapezoid. The values of \(m(P) \) at other pressures can be determined in a similar manner. Mathematically the pseudo-pressure can be calculated using the formula below:

\[
m(P) = \sum \left[\left(\frac{P}{\mu z} \right)_j + \left(\frac{P}{\mu z} \right)_{j-1} \right] (P_j - P_{j-1})
\]

Plot \(m(P) \) versus \(P \). This plot will provide the real pressure for any value of pseudo-pressure.
SOLUTION-GAS DRIVE RESERVOIRS

An oil well can be produced at a constant rate as long as the reservoir pressure remains above the bubble point pressure. Reservoir pressure can be maintained if there is an active water drive or by some means of local injection. In the absence of some type of mechanism to supply constant pressure the reservoir pressure will decrease as oil is produced.

The initial reservoir pressure for the Giant Panda was found to be 1400 psia. The PVT data indicated the bubble point pressure to be 1300 psia. It is obvious that the saturation pressure will be reached allowing the escape of gas in solution. As the gas saturation increases the relative permeability of oil decreases and the relative permeability of gas increases. This is Graph 1 of the Giant Panda Appendix. The increase in gas permeability allows the gas to flow more easily in the reservoir making it harder for the oil to flow. Therefore, the result will be a decrease in the oil production rate and an increase in the gas production rate over the life of the well. Because of this phenomenon, it is desirable to find the maximum oil production schedule in which the well flowing pressure is above abandonment pressure.
MONTE CARLO SIMULATION AND ECONOMIC EVALUATION

UNCERTAINTY

A large amount of uncertainty exists regarding cost and days required for drilling and completion, so these quantities are treated as probabilistic. In this project, three distributions are considered: uniform, triangular, and discrete.

In many cases detailed data are so limited that no distribution curve maybe developed from that data. But, on the basis of experience and general data, professional judgment maybe exercised. If a minimum, maximum and most probable value maybe developed a triangular distribution is possible. In some instance it is not reasonable to predict a most probable value, only a probable minimum and maximum are possible. For this case a rectangular distribution may be drawn.

UNIFORM DISTRIBUTION

Uniform distribution is used when upper and lower limits of the range of the variable can be specified and when any of the values between these limits are as likely to occur as any other value. Figure 7 in the General Appendix is a schematic representing uniform distribution.

The cumulative probability of \(x \) is given by

\[
f(x) = \frac{x - x_L}{x_H - x_L}
\]

Replacing \(f(x) \) with \(R_N \), the uniform distributed number and solving for \(x \).

\[
x = x_L + R_N (x_H - x_L)
\]
TRIANGULAR DISTRIBUTION

Triangular distribution is used when a median value, upper limit, and lower limit of a range of the variable are specified and when the probability of a value to occur is dependent on whether the random number is above or below the median value. Figure 8 in the General Appendix is a schematic representing triangular distribution.

When \(X_L \leq X \leq X_M \)

\[
F(x) = \left(\frac{x - x_L}{x_M - x_L} \right)^2 \times \left(\frac{x_M - x_L}{x_H - x_L} \right)
\]

When \(X_M \leq X \leq X_H \)

\[
F(x) = 1 - \left(\frac{x_H - x}{x_H - x_M} \right)^2 \times \left(\frac{x_H - x_M}{x_H - x_L} \right)
\]

Replacing \(F(x) \) by random number (\(R_N \)),

If \(R_N \leq \frac{x_M - x_L}{x_H - x_L} \)

\[
x = x_L + \sqrt{(x_M - x_L) \times (x_H - x_L) \times R_N}
\]

If \(R_N \geq \frac{x_M - x_L}{x_H - x_L} \)

\[
x = x_H - \sqrt{(x_H - x_M) \times (x_H - x_L) \times R_N}
\]
Discrete Probability Distribution

Discrete probability distribution is used when there are few cases of which the distinct probability of each to occur is known. Figure 9 in the General Appendix is a schematic representing discrete probability distribution.

<table>
<thead>
<tr>
<th>Required Condition</th>
<th>X Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>$0 \leq R_N \leq P_1$</td>
<td>X_1</td>
</tr>
<tr>
<td>$P_1 < R_N \leq P_1+P_2$</td>
<td>X_2</td>
</tr>
<tr>
<td>$P_1+P_2 < R_N \leq P_1+P_2+P_3$</td>
<td>X_3</td>
</tr>
<tr>
<td>$P_1+P_2+P_3 < R_N \leq 1$</td>
<td>X_4</td>
</tr>
</tbody>
</table>

Economics

Net Cash Flow (NCF) = Revenue – Initial cost – Operating cost – Taxes

Net Present Value (NPV) = $\sum \left[\frac{NCF_j}{(1+i)^j} \right]$, $(J=0 : J=n)$

Where,

- $J =$ Number of years
- $I =$ Discount rate
- $n =$ Total number of years

Discount Cash Flow Rate of Return (DCFROR) = $\left[\frac{NCF_j}{(1+i)^j} \right] = 0$
METHODOLOGY

CASING DESIGN, BIT SELECTION, AND COMPLETION

From given well logs the main productive sands were identified. The depth of the bottom contact of the deepest producing zone was then used as the desired setting depth of the production casing, and the diameter of the production casing was also determined. It was then decided, based on expected soft formations (that may cause the wellbore to cave in) or coal seams or pressure requirements, whether it was necessary to set intermediate casing in the well. A target depth and desired diameter were established if intermediate casing were to be run in the well. The diameter and setting depth of the surface casing was also decided upon. Other values were gathered, such as drilling fluid type, drilling fluid weight, formation gradient in pounds per square inch per foot, bottomhole temperature, and the fracture gradient at the total depth. For the casing design, any gas kicks used in pressure requirement calculations are assumed to be ideal methane.

Since the fracture gradient for both wells was unknown, a simple procedure was be used to provide an accurate estimate. First, the tops and bottoms of the encountered formations were recorded. The rock type was then determined, and its corresponding density was recorded. For our purposes, the density of sandstone was 2.65 grams per cubic centimeter, and the density of shale was 2.69 grams per cubic centimeter. Then, using the thickness of the formations and their corresponding density, an average density was calculated. Overburden stress was calculated using total depth, drilling fluid weight, and average density. Formation pore pressure was determined as the product of formation gradient and total depth. Fracture pressure was then found using the following formula:

$$\text{Fracture Pressure} = \frac{\text{Overburden Stress} + 2 \times (\text{Formation Pore Pressure})}{3}$$

The fracture pressure was then converted to the fracture gradient in pounds per gallon at total depth. The fracture gradient calculations and results for the Red Panda and Giant Panda wells are detailed as Table 1 in the Red Panda Appendix and Table 1 in the Giant Panda Appendix, respectively.

Once the above-mentioned values have been obtained, the casing design procedure began. Three key factors are examined: burst, collapse, and tension in the casing.
Burst Design

In burst design, it is assumed that the well has an initial bottom hole pressure equal to the formation pore pressure and a gaseous produced fluid in the well. Therefore, the production casing must be designed so that it will not fail if the tubing fails. In the worst-case scenario, it is assumed that a leak in the tubing occurs at the surface. The bottom hole pressure was computed using the fracture gradient plus a 0.3 pounds per gallon safety. Then, the gas gradient was calculated in pounds per square inch per foot.

From this, the internal pressures at the top and the bottom of the casing were determined. The internal pressure at the top of the production casing was found by taking the difference of the bottom hole pressure and the pressure of the gas gradient at the target depth. In the intermediate casing, this is the maximum allowable surface pressure based on the working pressure of surface equipment or the attainable pressure after a kick when the annulus is filled with gas. The internal pressure in the surface casing is equal to the bottomhole pressure minus the pressure due to the gas column. The bottom internal pressure for the production casing is the sum of the top internal pressure and the pressure of the drilling mud at the target depth. The bottom internal pressure for the surface casing is equal to the formation fracturing pressure plus a safety margin of one pound per gallon. The bottom internal pressure for the intermediate casing is the same as for the surface casing, but it is assumed that the annulus is filled with mud and gas.

Next, external pressures were calculated. The top external pressure for production, intermediate, and surface casing is assumed to be zero. The external pressure for the production intermediate, and surface casing at the bottom is equal to the formation gradient pressure at the target depth or the water column pressure.

Then, the resultant pressures and design pressures were computed. The top and bottom resultant pressures were the result of the difference of the internal pressure and the external pressure. The top and bottom design pressures were determined by multiplying the resultant pressure by a burst design factor of 1.1. Using Table 7.6 in *Applied Drilling Engineering* for the desired casing diameter, the casing with the cheapest grade and smallest nominal weight that meets burst criteria is selected. The actual used safety factor can then be determined.
COLLAPSE DESIGN

The collapse design is based on the idea that the reservoir pressure has been depleted to a very low abandonment pressure. Since a leak in the tubing could cause the loss of the completion fluid, the entire casing is considered to be empty for design purposes.

Internal pressures are found first, with the top pressure being zero for production, intermediate, and surface casing. The bottom internal pressure is found for the intermediate casing due to the mud density used for the next casing setting depth with a column height equal to the normal formation pressure at the casing seat. The bottom internal pressure for both surface and production casing is zero.

For production, intermediate, and surface casing, the top external pressure is zero. The external bottom pressure for surface casing is due to the mud column or formation pressure gradient. The load increases due to cement column if it exists beyond a certain depth. For intermediate casing, the bottom external pressure is due to the mud column, and the load increases due to the cement column if it exists beyond a certain depth. Cement can even be considered to extend to the surface. The bottom external pressure for production casing is similar to the surface and intermediate casings with fluid density equal to the density of the mud used in the last interval.

The resultant pressures are then calculated, taking the difference of the external and internal pressures. Using a collapse safety factor of 1.1, the top and bottom design pressures were determined. Again, using Table 7.6 from *Applied Drilling Engineering*, the lightest, lowest grade of casing that meets collapse specifications is selected. This casing is compared to the one chosen during burst design; then the heavier, better grade casing is selected. The actual used safety factors are calculated.

TENSION DESIGN

The first step in the tension design is to combine the casing strings from the burst and collapse design, selecting the stronger casing for each segment. The calculations for tension design are identical for production casing, intermediate casing, and surface casing. The hydrostatic fluid pressure of the mud column at the bottom was found. Then, the metal area of the casing at the bottom was found using the outer and inner diameters of the selected casing.

The axial tension was then found by subtracting the product of the hydrostatic fluid pressure and the metal area at the bottom from the product of the casing nominal weight and the casing length. For the tension design safety factor, an additional 100,000 pounds force may be added or the
axial tension may be multiplied by 1.6, whichever is greater. Table 7.6 in *Applied Drilling Engineering* is again used with the same logic as before to select the casing. The casing selected during tension is then compared to that which was chosen during burst design and collapse design. The stronger casing is then chosen as the final casing design, and the final used safety factors are calculated for each design criteria. The casing design calculations for the Red Panda and Giant Panda well can be seen as Table 2 in the Red Panda Appendix and Table 3 in the Giant Panda Appendix.

Bit Selection

Based on the selected production, intermediate, and/or surface casing, the bits to drill each casing string are selected. Table 7.7 in *Applied Drilling Engineering* is consulted first using the production casing outer diameter. Common bit sizes used to drill this size casing are then obtained. Next, Table 7.8 is checked to ensure that this size bit will pass through the next string of casing. If the bit size passes, Table 5.12 is consulted to determine the class specifications of the bit based on the types of rock encountered during drilling. Then, return to Table 7.7 to choose a bit size to drill the next string of casing. This procedure is repeated until bits have been chosen and checked for all casing strings. The bits chosen for both the Giant Panda and the Red Panda wells are listed in Results and Discussion.

Completion Type

Well logs and other various well data were analyzed to determine the type of completion desired for each well. Based on thickness of pay zone, selective stimulation advantages, and other criteria, an open-hole or perforated completion was chosen for each well. If a perforated completion was selected, then well logs were used in order to select the perforation intervals. It was then decided whether the well should have single-zone production or production from multiple zones. If the well produces from multiple zones, it must then be decided whether co-mingled production should exist or not. Tubing diameters were also selected at this point. Also, the necessity of packers and hydraulically pumped wells was examined.
WELL LOG INTERPRETATION AND RESERVE ESTIMATION

In order to determine an estimate for reserves, an appropriate suite of well logs must be obtained. These logs are interpreted to obtain reservoir characteristic properties, which are then used to estimate the well's reserves based on the volumetric method. Since different logs were available for the Red Panda well and the Giant Panda well, the reserve estimate methodology for each well will be explained separately. The pay zones for all logs used in interpretation may be viewed in their respective appendices.

RED PANDA WELL

The Red Panda well has three pay zones, the first of which is the Ravenscliff sand (1538'-1544'), the second in the Big Lime (2498'-2504'), and the third in the Berea sand (3346'-3360'). All values were done for every two feet of pay zone. The induction log for the Red Panda well is shown as Log 1 in the Red Panda Appendix, and the bulk density and density porosity log is shown as Log 2.

First, the bulk density log (DRHO) was read in grams per cubic centimeter and recorded. The matrix density used was 2.68 grams per cubic centimeter. The fluid density used was 1.0 since the well was air-drilled. Then, values for calculated density porosity were found using the equation below:

\[\phi_{DI} = \frac{\rho_{ma} - \rho_b}{\rho_{ma} - \rho_f} \]

Values for density porosity were also read from the density porosity log (DPHI). For each two-foot interval, the calculated density porosity and density porosity read from the log were averaged to obtain the formation porosity.

Next, the dual induction log was analyzed using the deep induction log (ILD). Values for deep induction resistivity were read for every two feet and recorded. It was assumed that the true formation resistivity is equal to the deep induction resistivity read from the log. The formation resistivity factor was then calculated using the averaged porosity in the following equation, which is valid for tight sandstone:

\[F_r = \frac{0.81}{\phi^2} \]
Next, the water saturation is calculated by equation below. A value of 0.055 ohm-meters was used for water resistivity, which is a valid assumption for this area of West Virginia.

\[
S_w = \left(\frac{R_o R_w}{R_i} \right)^{1/2}
\]

Finally, the original gas in place in thousand standard cubic feet per acre is found using the below equation:

\[
G = \frac{0.4356Ah \phi (1 - S_w)}{B_{gi}}
\]

where,

- \(A \) = Area, 1 acre
- \(h \) = Height, ft
- \(\phi \) = Porosity, percent
- \(S_w \) = Water Saturation, fraction
- \(B_{gi} \) = Initial Gas Formation Volume Factor, SCF/STB

These values were then summed to obtain the original gas in place for the Red Panda well in thousand standard cubic feet per acre.

Giant Panda Well

The Giant Panda well also has three pay zones, the first of which is the 2\(^{nd}\) Vedder sand (4652' - 4660'), the second and third zones in the 3\(^{rd}\) Vedder sand (4790' - 4800' and 4810' - 4836'). The 3\(^{rd}\) Vedder sand has been divided into two separate pay zones due to the fact that this sand contains an intermediate shale at this location. All values were done for every two feet of pay zone. The induction log for the Giant Panda well is shown as Log 1 in the Giant Panda Appendix, and the bulk density and neutron porosity log is shown as Log 2.

First, the bulk density log (DRHO) was read in grams per cubic centimeter and recorded. Since the reservoir rock is sandstone, 2.65 grams per cubic centimeter was used as the matrix density. The fluid density used was 1.06, which is simply the mud density of 8.8 pounds per gallon divided by the density of water (8.33 pounds per gallon). Then, values for density porosity were calculated using the equation below:

\[
\phi_D = \frac{\rho_{ma} - \rho_h}{\rho_{ma} - \rho_f}
\]
Values for neutron porosity were read from the neutron porosity log (NPHI). For each two-foot interval, the density porosity and neutron porosity were averaged to obtain the formation porosity.

Next, the dual induction log was analyzed using the deep induction log (ILD). Values for deep induction resistivity were read for every two feet and recorded. It was assumed that the true formation resistivity is equal to the deep induction resistivity read from the log. The formation resistivity factor was then calculated using the averaged porosity using Humble's equation, which is valid for unconsolidated sandstone:

$$F_R = \frac{0.62}{\phi^{2.15}}$$

Next, the water resistivity is calculated by dividing the true resistivity by the formation resistivity factor. Next, resistivity index is found by dividing each water resistivity by the minimum water resistivity value for the entire log. Then, the water saturation can be found using the following equation:

$$S_w = \frac{1}{I^{1/2}}$$

Finally, the original oil in place in stock tank barrels per acre is found using the below equation:

$$N = \frac{77.58Ah\phi^{7.} - S_w}{B_{oi}}$$

where,

- A = Area, 1 acre
- h = Height, ft
- ϕ = Porosity, percent
- S_w = Water Saturation, fraction
- B_{oi} = Initial Oil Formation Volume Factor, RB/STB

These values were then summed to obtain the original oil in place for the Giant Panda well in stock tank barrels per acre.
WELL TEST ANALYSIS

RED PANDA WELL

The following build-up data were used in analysis of the Red Panda gas well in West Virginia. The well was tested prior to fracturing with a flow rate of 190 MCF/D. The producing time before the well test was 1,200 hours. The 0.65 gravity gas was produced through a wellbore radius of 0.25 inches with a bottomhole temperature of 202 degrees Fahrenheit. From well log interpretation, it is known that the net pay for this well is 25 feet with an average porosity of 10.1 percent.

<table>
<thead>
<tr>
<th>Shut-in Time, t, hours</th>
<th>Shut-in Pressure, P_{ws}, psi</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>707</td>
</tr>
<tr>
<td>0.07</td>
<td>720</td>
</tr>
<tr>
<td>0.29</td>
<td>759</td>
</tr>
<tr>
<td>0.94</td>
<td>872</td>
</tr>
<tr>
<td>2.23</td>
<td>1088</td>
</tr>
<tr>
<td>3.58</td>
<td>1304</td>
</tr>
<tr>
<td>4.97</td>
<td>1521</td>
</tr>
<tr>
<td>6.41</td>
<td>1739</td>
</tr>
<tr>
<td>7.92</td>
<td>1957</td>
</tr>
<tr>
<td>9.46</td>
<td>2176</td>
</tr>
<tr>
<td>11.0</td>
<td>2395</td>
</tr>
<tr>
<td>16.1</td>
<td>3054</td>
</tr>
<tr>
<td>25.4</td>
<td>4136</td>
</tr>
<tr>
<td>29.9</td>
<td>4556</td>
</tr>
<tr>
<td>35.0</td>
<td>4961</td>
</tr>
<tr>
<td>45.6</td>
<td>5539</td>
</tr>
<tr>
<td>50.6</td>
<td>5702</td>
</tr>
<tr>
<td>66.6</td>
<td>6001</td>
</tr>
<tr>
<td>81.6</td>
<td>6118</td>
</tr>
<tr>
<td>110.0</td>
<td>6210</td>
</tr>
<tr>
<td>181.0</td>
<td>6283</td>
</tr>
<tr>
<td>301.0</td>
<td>6334</td>
</tr>
<tr>
<td>421.0</td>
<td>6363</td>
</tr>
<tr>
<td>541.0</td>
<td>6383</td>
</tr>
<tr>
<td>661.0</td>
<td>6397</td>
</tr>
<tr>
<td>781.0</td>
<td>6408</td>
</tr>
<tr>
<td>901.0</td>
<td>6417</td>
</tr>
<tr>
<td>1021.0</td>
<td>6424</td>
</tr>
<tr>
<td>1141.0</td>
<td>6429</td>
</tr>
<tr>
<td>1200.0</td>
<td>6432</td>
</tr>
</tbody>
</table>
Because the pressure data covers a large range, the pseudopressure method must be used in order to determine permeability, skin factor, and flow efficiency.

In order to analyze the deliverability of a gas reservoir, an engineer must know the reservoir and fluid parameters, which include things such as permeability, porosity, compressibility, and formation volume factor. Some are dependent upon pressure; therefore, these values are constantly changing during production of the reservoir.

Gas flow through porous media is given by the partial differential equation that can be obtained by combining the continuity equation, Darcy's law, and equations of state. As can be seen from the partial differential equation for gases (for either horizontal flow or radial flow) compared with the partial differential equations for fluids, a new term appears \(\frac{P}{\mu z} \). This is due to the gas deviation factor and the higher compressibility of gases compared to fluids, both of them being functions of pressure. In order to solve the equations, a new term called pseudo-pressure \(m(P) \) was defined. Mathematically, it is defined as the integral of \(\frac{P}{\mu z} \) between two pressures as seen below:

\[
m(P) = 2\int \frac{P}{\mu z} \, dP
\]

Using the pseudo-pressure results in increased accuracy for both drawdown and build-up tests; thus, this has become a very popular method of well test analysis.

The build-up test is the most common pressure transient test used for reservoir analysis. There are three methods of analysis of the build-up test.

1. **\(P^2 \) Method**
 This method is limited to pressures less than 1500 pounds per square inch. The pressure build-up can be analyzed by several differential methods developed by Horner, Miller-Dyes-Hutchinson, Muskat, and Agarwal.

2. **\(P \) Method**
 This method can be used if the pressure is higher than 3000 pounds per square inch when the behavior of gas is considered to be like that of fluids. This method for analyzing the gas well test data is similar to that which is used for fluids.
3. \textit{m(P)} Method

This method is the most accurate method and has no major limitations. It does not assume that pressure gradients are small in the reservoir and does not require that the gas properties are constant at same specific pressure. The most important advantage of this method is that it is applicable to all pressure ranges.

For a particular gas gravity and reservoir temperature, the relationship between \(P \) and \(m(P) \) can be obtained using the following procedure:

Determine \(\mu \) and \(z \) as functions of pressure for the entire range of pressures involved in the test analysis. Pressure increments of one to ten pounds per square inch are normally adequate.

Compute the following for each pressure in Step 1:

\[
\frac{2P}{\mu z}
\]

Compute \(m(P) \) as a function of pressure using numerical integration. In order to compute the value of \(m(P) \) at some pressure \(P_1 \), it is necessary to compute the area under the curve between \(P_b \) and \(P_1 \). This area, \(A_i \) is equal to the following:

\[
m(P) = \int \frac{2P}{\mu z} dP
\]

If the pressure increment, \(P_1 - P_b \) is sufficiently small, the area can be assumed to be a trapezoid. The values of \(m(P) \) at other pressures can be determined in a similar manner. Mathematically the pseudo-pressure can be calculated using the formula below:

\[
m(P) = \sum \left[\left(\frac{P}{\mu z} \right)_j + \left(\frac{P}{\mu z} \right)_{j-1} \right] (P_j - P_{j-1})
\]

Plot \(m(P) \) versus \(P \). This plot will provide the real pressure for any value of pseudo-pressure. Another transformation that improves the accuracy of the gas reservoir engineering analysis is the introduction of pseudo-time. The gas pseudo-time is defined as the following:

\[
t_a = \int \frac{1}{\mu \chi} dt'
\]
The use of pseudo-time enhances the accuracy of adoption of liquid flow solution and is useful for pressure transient analysis and production history matching with type curves. The pseudo-time can be approximated by the trapezoidal rule as the following:

\[m(P) = \sum \frac{(t_j - t_{j-1})}{(P_j - P_{j-1})(I_{p_j} - I_{p_{j-1}})} \]

Where,

\[I_p = \int \frac{1}{\mu c_g} dP \]

Ip can be determined using trapezoidal rule as follows:

\[I_p = \sum \left[\left(\frac{1}{\mu c_g} \right)_j + \left(\frac{1}{\mu c_g} \right)_{j-1} \right] \left(\frac{P_j - P_{j-1}}{2} \right) \]

To calculate the pseudo-pressure and pseudo-time, a previously developed computer program was utilized [Program 1 in the Red Panda Appendix]. The steps used by the program were one pound per square inch, which is small enough to obtain good results in calculating \(m(P) \) and \(t_a \).

Once the values for pseudo-pressure and pseudo-time were obtained, the following graphs were plotted:

1. Log-log plot of \(\Delta m(P) \) versus \(t_a \)
2. Log-log plot of \(\Delta m(P) \) versus \(\Delta t \)
3. Cartesian plot of \(m(P) \) versus \(P \)
4. Horner plot (semilog plot) of \(m(P) \) versus \((t_a + \Delta t)/\Delta t \)

Permeability is computed from the slope of the Horner straight line using the equation below:

\[k = -\frac{1637qT}{m h} \]

Skin factor is computed using the following equations:

\[S' = 1.151 \left[\frac{m(P_{wf}) - m(P_{1hr})}{m} - \log \frac{k}{\phi \mu c_i r_w^2} + 3.23 \right] \]

where, \(\phi \mu \) and \(c_i \) are evaluated at \(P^* \).
The turbulence coefficient is then estimated using:

\[D = \frac{5.18 \times 10^{-5} \gamma_g}{\mu * hr_{w}k^{0.2}} \]

The skin factor is thus:

\[S = S' - Dq \]

The pressure drop due to skin is:

\[\Delta P_s = -0.869mS \]

The flow efficiency is found using the following equation:

\[E = \frac{m(P^*) - m(P_{wf}) - \Delta m(P)_s}{m(P^*) - m(P_{wf})} \]

Equations Used in Determination of Gas Properties

z-factor: The Dranchuk and Abu-Kassem Method was used, seen below:

\[
z = 1 + \left[A_1 + \frac{A_2}{P_{pr}} + \frac{A_3}{P_{pr}^3} + \frac{A_4}{P_{pr}^4} + \frac{A_5}{P_{pr}^5} \right] \rho_r + \left[A_6 + \frac{A_7}{P_{pr}} + \frac{A_8}{P_{pr}^2} \right] \rho_r^2 - \\
A_9 \left[\frac{A_2}{P_{pr}} + \frac{A_8}{P_{pr}^2} \right] \rho_r^5 + A_{10} \left(1 + A_{11} \rho_r^2 \left(\frac{\rho_r^2}{P_{pr}^2} \right) \right) \exp(-A_{12} \rho_r^2)
\]

Where,

\[\rho_r = 0.27 \frac{P_{pr}}{Z T_{pr}} \]

and

\[A_1 = 0.3265 \]
\[A_2 = -1.0700 \]
\[A_3 = -0.5339 \]
\[A_4 = 0.01569 \]
\[A_5 = -0.05165 \]
\[A_6 = 0.5475 \]
\[A_7 = -0.7361 \]
\[A_0 = 0.1844 \]
\[A_9 = 0.1056 \]
\[A_{10} = 0.6134 \]
\[A_{11} = 0.7210 \]

Gas Compressibility

\[c_g = \frac{c_{gr}}{p_{pc}} \]

Where,

\[c_{gr} = \frac{1}{p_{pr}} - 0.27 \left(\frac{dz}{dp_r} \right) \left(\frac{dz}{dp_r} \right) \]

And

\[
\frac{dz}{dp_r} = 1 + \left[A_1 + \frac{A_2}{T_{pr}} + \frac{A_3}{T_{pr}^3} + \frac{A_4}{T_{pr}^4} + \frac{A_5}{T_{pr}^5} \right] + 2 \left[A_6 + \frac{A_7}{T_{pr}} + \frac{A_8}{T_{pr}^2} \right] \rho_r - \\
4A_9 \left[\frac{A_7}{T_{pr}} + \frac{A_8}{T_{pr}^2} \right] \rho_r^4 + 2A_{10} (1 + A_{11} \rho_r^2 - A_{11} \rho_r^4) \left(\frac{p_r^5}{T_{pr}^3} \right) \exp(-A_{11} \rho_r^2)
\]

Gas Viscosity: The Dean and Stiel Method was used.

For \(T_{pr} \leq 1.5 \),

\[\mu_1 = 34 \times 10^{-5} \frac{T_{pr}^{8/9}}{\zeta_m} \]

\[\mu_1 = 166.8 \times 10^{-5} \frac{(0.1338T_{pr} - 0.0832)^{6/9}}{\zeta_m} \]

For \(T_{pr} > 1.5 \),

where,

\[\zeta_m = \frac{5.4402T_{pc}^{1/6}}{MW_{a}^{1/2}p_{pc}^{2/3}} \]
Following, the relationship to calculate the viscosity is seen below:

\[
\mu_g = \mu_1 + 10.8 \times 10^{-5} \left[\exp(1.439\rho_r) - \exp(-1.111\rho_r^{1.888}) \right] \xi_m
\]

Where,

\(\mu_g \) = Gas viscosity at reservoir pressure and temperature
\(\mu_1 \) = Gas viscosity at atmospheric pressure and temperature, cp
\(\rho_r \) = Reduced gas density

Giant Panda

The following drawdown data were used in the analysis of the Giant Panda well in California. The well was tested while producing at a constant volumetric rate of 500 STB/D. The producing time during the test was 16.4 hours. At the onset of the test the pressure was assumed to be reasonably uniform in the reservoir at 2400 psi. The oil with a formation volume factor of 1.2 RB/STB was produced through a wellbore radius of 0.3 inches. From well log interpretation, it is known that the net pay for this well is 44 feet with an average porosity of 34.2 percent.

<table>
<thead>
<tr>
<th>time (hr)</th>
<th>(\Delta) Press (psi)</th>
<th>Press (psi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0109</td>
<td>24</td>
<td>2376</td>
</tr>
<tr>
<td>0.0164</td>
<td>36</td>
<td>2364</td>
</tr>
<tr>
<td>0.0218</td>
<td>47</td>
<td>2353</td>
</tr>
<tr>
<td>0.0273</td>
<td>58</td>
<td>2342</td>
</tr>
<tr>
<td>0.0328</td>
<td>70</td>
<td>2330</td>
</tr>
<tr>
<td>0.0382</td>
<td>81</td>
<td>2319</td>
</tr>
<tr>
<td>0.0437</td>
<td>91</td>
<td>2309</td>
</tr>
<tr>
<td>0.0491</td>
<td>103</td>
<td>2297</td>
</tr>
<tr>
<td>0.0546</td>
<td>114</td>
<td>2286</td>
</tr>
<tr>
<td>0.109</td>
<td>215</td>
<td>2185</td>
</tr>
<tr>
<td>0.164</td>
<td>307</td>
<td>2093</td>
</tr>
<tr>
<td>0.218</td>
<td>389</td>
<td>2011</td>
</tr>
<tr>
<td>0.273</td>
<td>464</td>
<td>1936</td>
</tr>
<tr>
<td>0.328</td>
<td>531</td>
<td>1869</td>
</tr>
<tr>
<td>0.382</td>
<td>592</td>
<td>1808</td>
</tr>
<tr>
<td>0.437</td>
<td>648</td>
<td>1752</td>
</tr>
<tr>
<td>0.491</td>
<td>698</td>
<td>1702</td>
</tr>
<tr>
<td>0.546</td>
<td>744</td>
<td>1656</td>
</tr>
<tr>
<td>1.09</td>
<td>1048</td>
<td>1352</td>
</tr>
<tr>
<td>1.64</td>
<td>1172</td>
<td>1226</td>
</tr>
<tr>
<td>2.18</td>
<td>1232</td>
<td>1168</td>
</tr>
<tr>
<td>2.73</td>
<td>1266</td>
<td>1134</td>
</tr>
<tr>
<td>3.28</td>
<td>1288</td>
<td>1112</td>
</tr>
<tr>
<td>3.82</td>
<td>1304</td>
<td>1096</td>
</tr>
<tr>
<td>4.37</td>
<td>1316</td>
<td>1084</td>
</tr>
<tr>
<td>4.91</td>
<td>1326</td>
<td>1074</td>
</tr>
<tr>
<td>5.46</td>
<td>1335</td>
<td>1065</td>
</tr>
<tr>
<td>6.56</td>
<td>1348</td>
<td>1051</td>
</tr>
<tr>
<td>8.74</td>
<td>1370</td>
<td>1030</td>
</tr>
<tr>
<td>10.9</td>
<td>1386</td>
<td>1014</td>
</tr>
<tr>
<td>16.4</td>
<td>1413</td>
<td>987</td>
</tr>
</tbody>
</table>
The P method was used to analyze the Giant Panda well. A log-log plot of ΔP_{wf} versus t (Graph 2 in the Giant Panda Appendix) was constructed in order to estimate the time at which the effects of wellbore storage are no longer prevalent. To find this time one draws an extended straight line connecting the first several points. The point where the data deviate from the drawn line indicates t^*, the end of complete control by wellbore storage. It is common practice to multiply t^* by 50 to obtain the producing time when wellbore storage effects will end. Now, a semi-log graph of P_{wf} versus t (Graph 3 in the Giant Panda Appendix) is analyzed to estimate k, S, and E. A straight line is drawn through the data points on the semi-log graph beginning at the time obtained from $50t^*$. The slope of this line is used as the m (psi/cycle) value. The line is extended to obtain the pressure at 1 hour. With these values and the thickness that was obtained from the well logs analysis, the permeability, k, can now be estimated using the following formula:

$$k = -162.6 \frac{qB\mu}{m h}$$

The skin value can now be estimated.

$$S = 1.151\left[P_{1hr} - P_i/m - \left(\log(k/\phi \mu c_{trw}^2) - 3.23\right)\right]$$

Pressure loss due to skin

$$\Delta p_s = |0.87 m s|$$

The flow efficiency is the ratio of J_{actual}/J_{ideal}

$$E = \frac{(P_R - P_{wf} - \Delta p_s)}{(P_R - P_{wf})}$$
Reservoir Performance Prediction

Reservoir Fluid Property Correlations

A computer program was written in Visual Basic 6.0 (Program in General Appendix) in which correlations were utilized to calculate reservoir fluid properties. Next, three graphs were to be developed using these appropriate correlations and are shown in the General Appendix. The first graph to be developed is that of z-factor versus pseudo-reduced pressure for pseudo-reduced temperatures of 3.0, 2.4, 2.0, 1.8, 1.6, 1.4, 1.3, 1.2, and 1.1. The second graph is that of gas viscosity versus pressure for the given reservoir conditions of the Red Panda well, and the third graph is oil viscosity versus pressure for the reservoir conditions of the Giant Panda well.

For the z-factor correlations, the Dranchuk, Purvis, & Robinson Method was used. First, an initial density is estimated using the equation seen below:

$$\rho_0 = 0.27 \frac{P_r}{T_r}$$

Next, a new density is calculated using the following sets of equations.

$$\rho_{k+1} = \rho_k - \left[f(\rho_k) \right] / \left[f'(\rho_k) \right]$$

Where,

$$f(\rho) = a\rho^6 + b\rho^3 + c\rho^2 + d\rho + e\rho^3(1 + f\rho^2) \exp[-f\rho^2] - g$$

$$f'(\rho) = 6a\rho^5 + 3b\rho^2 + 2c + d + e\rho^2(3 + f\rho^2[3-2f\rho^2])\exp(-f\rho^2)$$

and

$$a = 0.06423$$
$$b = 0.5353T_r - 0.6123$$
$$c = 0.3151T_r - 0.0467 - 0.5783 / T_r^2$$
$$d = T_r$$
$$e = 0.6816 / T_r^2$$
$$f = 0.6845$$
$$g = 0.27 P_r$$

The density is iterated upon until convergence.

Following this, the z-factor is calculated using the equation below:

$$z = 0.27 \frac{P_r}{\rho T_r}$$

Using this method, the z-factor was found and plotted for pseudo-reduced temperatures of 3.0, 2.4, 2.0, 1.8, 1.6, 1.4, 1.3, 1.2, and 1.1 and pseudo-reduced pressures ranging from 0 to 15.
The gas viscosity was calculated using a combination of the Carr, Kobayashi, & Burrows Method and the Dempsey Equation as seen below:

\[\mu_{g1} = (1.709E-5 - 2.062E-6 \gamma_g)T_F + 8.188E-3 - 6.15E-3 \log \gamma_g \]

\[\ln(T_r \mu_g / \mu_{g1}) = a_0 + a_1 P_r + a_2 P_r^2 + a_3 P_r^3 + T_r (a_4 + a_5 P_r + a_6 P_r^2 + a_7 P_r^3) \]

\[+ T_r^2 (a_8 + a_9 P_r + a_{10} P_r^2 + a_{11} P_r^3) + T_r^3 (a_{12} + a_{13} P_r + a_{14} P_r^2 + a_{15} P_r^3) \]

where,

- \[a_0 = -2.46211820 \]
- \[a_1 = 2.97054714 \]
- \[a_2 = -286264054E-1 \]
- \[a_3 = 8.05420522E-3 \]
- \[a_4 = 2.80860949 \]
- \[a_5 = -349803305 \]
- \[a_6 = 3.60373020E-1 \]
- \[a_7 = -1.04432413E-2 \]
- \[a_8 = -793385684E-1 \]
- \[a_9 = 1.39643306 \]
- \[a_{10} = -1.49144925E-1 \]
- \[a_{11} = 4.41015512E-3 \]
- \[a_{12} = 8.39387176E-2 \]
- \[a_{13} = -1.8608848E-1 \]
- \[a_{14} = 2.033667881E-2 \]
- \[a_{15} = -6.09579263E-4 \]

The gas viscosity was calculated for values from 0 to reservoir pressure. A plot was then generated of gas viscosity versus pressure.

The oil viscosity was found using the equations from which Figures 5 and 6 in the General Appendix were developed. First the dead oil viscosity was determined:

\[\log \log (\mu_{od} + 1) = 1.8653 - 0.025086 \text{API} \]

This value was then used in the following equation to obtain the oil viscosity:

\[\mu_o = A \mu_{od}^B \]

Where,

- \[A = 10.715(R_o + 100)^{0.515} \]
- \[B = 5.44(R_o + 150)^{0.338} - 0.5644 \log(T) \]

The oil viscosity was calculated for values from 0 to reservoir pressure. A plot was then generated with oil viscosity versus pressure.
RED PANDA WELL

The objective of the Red Panda gas well calculations is to achieve the maximum constant flow rate possible for a seven-year contract period. This well is one of many wells in this field owned by the company, which is contributing to the contract. A minimum spacing of 40 acres and a well-flowing abandonment pressure of 100 psia have been assumed. Calculations were performed on a monthly basis using a computer program written in Visual Basic 6.0 (Program 2 in the Red Panda Appendix).

A combination of several equations was used in order to solve for the reservoir pressure and well-flowing pressure profiles. The first of these equations is the gas deliverability equation seen below:

\[P_r - P_{wf} = Aq + Bq^2 \]

Where,

A and B are constant coefficients.

One can easily see that if the flow rate (q) is to remain constant, as the contract above declares, the right hand side of the deliverability equation must remain constant. By obvious mathematical reasoning, it is known that if one side of the equation is constant, the other side must also be constant. Following this logic, \(P_r - P_{wf} \) (or \(\Delta P \)) must remain constant. For this to be true, both \(P_r \) and \(P_{wf} \) must decline simultaneously keeping a constant \(\Delta P \).

For the calculations, pseudo-pressures will be used. Pseudo-pressures more accurately evaluate the effects of changes in viscosity and z-factor. The real gas pseudo-pressure is defined as:

\[m(P) = 2 \int \frac{P}{\mu_z \gamma_g^{\frac{1}{2}}} dP \]

Using pseudo-pressures, the deliverability equation takes the form:

\[m(P_r) - m(P_{wf}) = Aq + Bq^2 \]

where,

\[A = \left(\frac{1422 T}{kh} \right) * \left(\ln \left(\frac{0.472 r_e}{r_w} \right) + S \right) \]

\[B = \left(\frac{1422 T}{kh} \right) * D \]

\[D = 5.18 \times 10^{-5} \gamma_g / \mu h r_w k^{0.2} \]
It was shown previously that ΔP must remain constant if rate is to remain constant. Modifying the deliverability equation for pseudo-pressure, it is seen now that $\Delta m(P)$ must remain constant ($m(P_r)$ and $m(P_{wf})$ must decline simultaneously) for the rate to remain constant.

In conjunction with the gas deliverability equation, the gas material balance was used in order to determine reservoir and well-flowing pressure. The gas material balance is defined as:

$$\frac{P}{z} = \frac{P_i}{z_i} \left(1 - \frac{G_p}{G} \right)$$

The gas material balance plot can be seen as Figure 2 in the Red Panda Appendix. This is a plot of P/z versus G_p, which produces a straight line slope. This line intercepts the y-axis at P/z, and the x-axis at G_i. Since the flow rate will be kept constant, the gas produced each month is also a constant, which is known. With this, cumulative gas production for each month is also known. This value can be used to enter the material balance plot to find the corresponding P/z (this was done by the program, since the equation for the straight line is known). The P/z value was then iterated upon until convergence when P and z for that month are found.

The outflow equation was used to determine the wellhead pressure:

$$P_{wf}^2 = P_{wh}^2 \text{EXP}(S) + \left(25 \gamma g q^2 T z f D \left(\text{EXP}(S) - 1 \right) / (S d^5) \right)$$

Where,

$$S = 0.0375 \frac{\gamma g D}{TZ}$$

$$f = 0.032 / d^{1/3}$$

The determination of wellhead pressure is also an iterative technique. The procedure is as follows:

Estimate z^*.

1. Calculate wellhead pressure with $z=z^*$.
2. Calculate average pressure.
3. Evaluate z at average pressure and temperature.
4. Compare z and z^*. If convergence is not obtained, set $z^*=z$ and go back to step 2. Repeat until abs$(z-z^*)/z<0.001$. When convergence is obtained, the calculated wellhead pressure is the actual wellhead pressure.

At this point, all pressures have been determined for the particular time step in question. This procedure is repeated for a total of 84 months (7 years). The constant gas rate can then be altered until the maximum constant rate at which the well-flowing pressure can be kept above the abandonment pressure of 100 psia for 7 years.
GIANT PANDA PRESSURE PROFILE

One may attempt to predict the behavior of an oil well experiencing a solution gas drive by considering the material balance equation:

\[N = N \frac{PBO + B_G(G_{PS} - N \frac{PRS})}{B_O - B_{OI} + (R_{SI} - R_S)B_G} \]

Tanner suggested iteration on the produced gas-oil ratio at the state of depletion to be calculated or at the time when \(N \) barrels of oil have been produced. Extrapolating a plot of the instantaneous gas-oil ratio, \(R \), versus the reservoir pressure to the next average reservoir pressure at which the cumulative production of oil and gas is desired can carry out the iteration. The data for the plot can be previously calculated data or a plot of actual data. In either case the gas-oil ratio determined by extrapolation is used as the assumed gas-oil ratio, \(R_N \), that exists after \(N_{PN} \) barrels of oil have been produced. With the gas-oil ratio plot completed, the cumulative gas production, \(G_{PN} \), can be calculated as if \(N_{PN} \), which we are calculating, were known using the following equation:

\[G_{PN} = G_{P(N-1)} + \left[\left(R_N + R_{N-1} \right) / 2 \right] (N_{PN} - N_{P(N-1)}) \]

Consequently, we can substitute the expression for \(G_{PN} \) into a modified material balance equation without introducing new unknowns and solve for \(N_{PN} \):

\[N_{PN} = \frac{N[B_O - B_{OI} + (R_{SI} - R_S)B_G] + G(B_O - B_{OI})}{B_O - B_GR_S + (R_N + R_{N-1})B_G/2} \]

\[\frac{B_G[G_{P(N-1)} - (R_N + R_{N-1})N_{P(N-1)} / 2]}{B_O - B_GR_S + (R_N + R_{N-1})B_G/2} \]

The \(N_{PN} \) is calculated based on an assumed \(R_N \) estimated from an extrapolation of a plot of the produced gas-oil ratio, \(R \), versus the reservoir pressure. Then it is possible to determine the oil saturation in the reservoir at this time, \(S_{ON} \), using the following equation:

\[S_{ON} = \frac{(N - N_P)B_O(1 - S_{WC})}{(NB_{OI})} \]

Based on this saturation, the permeability ratio can be determined from given data and \(R_N \) can be calculated from the following equation:

\[R_N = R_S + K_G \mu_O B_O \]

\[K_O \mu_G B_G \]
If the assumed and calculated R_N are in satisfactory agreement, the engineer can proceed with the calculation for the next lowest pressure of interest. If the R_N values do not agree sufficiently, it is necessary to adjust the GOR-plot extrapolation accordingly and repeat the calculations until the R_N by extrapolation and the R_N calculated agree.
In the economic evaluation of the Giant Panda and Red Panda wells, we are interested in determining the well that will provide the greater return on our investment over a seven-year period. The decision making process involves generating a net present value profile for each well and comparing the two results in the form of a probability distribution. The Monte Carlo method was implemented in the generation of the probability distributions, and an uncertainty of 10% in the data was used in carry out the calculations. An Excel spreadsheet was used to generate the random numbers necessary when using the Monte Carlo simulation, as well as the calculations for net present value, NPV.

The given price of oil was $20/BBL, and the given price of gas was $3/MCF. A uniform distribution was implemented in determining the oil and gas price with the following formulas:

Where,

\[F(x) = \frac{x - x_l}{x_H - x_l} \]

\[x = x_l + R_N(x_H - x_l) \]

\[x_{L(oil)} = 19 \quad x_{L(gas)} = 2.85 \]
\[x_{H(oil)} = 21 \quad x_{H(gas)} = 3.15 \]

To determine the operating costs, a triangular distribution was used. The given value for oil was $0.75, high of $0.79, low of $0.71. The given value for gas was $0.25, high of $0.26, low of $0.24.

The following assumptions were made for operation costs:

OpCost for Oil = $0.32 per bbl
OpCost for Gas = $0.25 per MCF

Total Operating Cost/month = (Oil Op Cost)(N_oil/mo) + (Gas Op Cost)(G_oil/mo)
The following equations were used in triangular distribution of operating costs per barrel of oil and per thousand standard cubic feet of gas.

\[x_l \leq x \leq x_M \]

\[F(x) = \left(\frac{x - x_l}{x_M - x_l} \right) \left(\frac{x_M - x}{x_H - x_l} \right) \]

\[x_M \leq x \leq x_H \]

\[F(x) = 1 - \left(\frac{x_H - x}{x_M} \right) \left(\frac{x_M - x}{x_H - x_l} \right) \]

\[R_N \leq \left(\frac{x_M - x_l}{x_H - x_l} \right) \]

\[x = x_l + \sqrt{(x_M - x_l)(x_H - x_l)} R_N \]

\[R_N \geq \left(\frac{x_M - x_l}{x_H - x_l} \right) \]

\[x = x_H + \sqrt{(x_H - x_M)(x_H - x_l)(1 - R_N)} \]

Finally, for the days required for drilling, as well as completion, a discrete probability distribution was implemented. The possibilities assumed for drilling were 7, 8, 9, and 10 days. The possibilities for completion were 1.5, 2, 2.5, and 3 days. The following rules were used after the random numbers were generated:

\[0 \leq R_N \leq P_1 \quad X_1 \]

\[P_1 < R_N \leq P_1 + P_2 \quad X_2 \]

\[P_1 + P_2 < R_N \leq P_1 + P_2 + P_3 \quad X_3 \]

\[P_1 + P_2 + P_3 < R_N \leq 1 \quad X_4 \]

For the Red Panda well, Graph 1 and Graph 2 show the probability distribution used while determining the days required for drilling and the days required for completion, respectively in the Red Panda Appendix. For the Giant Panda well, Graph 4 and Graph 5 show the probability distribution used while determining the days required for drilling and the days required for completion, respectively in the Giant Panda Appendix.
Several variables had to be considered in determining the total investment cost. Those that were dependent on time were supervision, rig rate, and drilling. Other variables were assumed to be a one-time charge. The one-time charges are as follows: facilities, miscellaneous tools, perforating charges, other perforating charges, well supplies, transportation, drill string, other rentals and services, other subsurface, casing, tubing, and rods. The total investment was dependent upon tangibles, intangibles, and G&A. Tangibles are items that can be considered to depreciate. Intangibles include everything else such as supervision costs, rig costs, and transportation. G&A include labor and overhead costs. The investment determination for the Red Panda well is seen in Table 4 of the Red Panda Appendix. For the Giant Panda well, it is seen in Table 4 of the Giant Panda Appendix.

The determination of the values for cumulative oil and cumulative gas produced were calculated using the Tarner method. Several values were calculated based on surface pressures, and the corresponding times were then calculated. These values were plotted versus its corresponding time. The cumulative production for each month was then estimated and plotted until smooth lines between the points of those already obtained were formed. Graphs 6 and 7 in the Giant Panda Appendix display the cumulative oil and gas produced, respectively.

Using the values generated from the Monte Carlo simulation the investment, operating cost, and revenue values were inserted in the Excel spreadsheet, and an NPV was computed for many different interest rates. The next step was to make an NPV profile graph. This allowed us to determine the Discount Cash Flow Rate of Return, DCFROR. The line was assumed to be linear where it crossed the zero mark. The actual DCFROR was determined using a linear relationship. The net present value profile for the Red Panda Appendix may be viewed as Graph 3 in the Red Panda Appendix and as Graph 8 in the Giant Panda Appendix for the Giant Panda well.

The Frequency Distribution method was implemented to develop a graph of the Probability Distribution of the Anticipated Rate of Return. This was accomplished by computing 50 DCFROR values using the random number generator. They were then placed in their respective classes, totaled, and divided by the total number of values. For the Red Panda well, the probability distribution is shown as Graph 4 in the Red Panda Appendix. For the Giant Panda well, the probability distribution is shown as Graph 9 in the Giant Panda Appendix.
RESULTS AND DISCUSSION

CASING DESIGN, BIT SELECTION, AND COMPLETION

The table below displays the results of the casing design and bit selection for both the Giant Panda and the Red Panda wells. The detailed calculations may be seen for each well in the Red Panda Appendix as Table 2 and in the Giant Panda Appendix as Table 2.

<table>
<thead>
<tr>
<th>Casing String</th>
<th>Diameter</th>
<th>Type</th>
<th>Setting Pressure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Giant Panda Well</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Production Casing</td>
<td>7"</td>
<td>J-55</td>
<td>23 #/ft</td>
</tr>
<tr>
<td>Bit</td>
<td>8 3/4"</td>
<td>Class 5-3-7</td>
<td></td>
</tr>
<tr>
<td>Surface Casing</td>
<td>9 5/8"</td>
<td>H-40</td>
<td>32.3 #/ft</td>
</tr>
<tr>
<td>Bit</td>
<td>12 1/4"</td>
<td>Class 5-3-7</td>
<td></td>
</tr>
<tr>
<td>Red Panda Well</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Production Casing</td>
<td>4 1/2"</td>
<td>J-55</td>
<td>9.5 #/ft</td>
</tr>
<tr>
<td>Bit</td>
<td>6"</td>
<td>Class 5-3-7</td>
<td></td>
</tr>
<tr>
<td>Intermediate Casing</td>
<td>8 5/8"</td>
<td>H-40</td>
<td>28 #/ft</td>
</tr>
<tr>
<td>Bit</td>
<td>11"</td>
<td>Class 5-3-7</td>
<td></td>
</tr>
<tr>
<td>Surface Casing</td>
<td>11 3/4"</td>
<td>H-40</td>
<td>32.3 #/ft</td>
</tr>
<tr>
<td>Bit</td>
<td>17 1/2"</td>
<td>Class 5-3-7</td>
<td></td>
</tr>
</tbody>
</table>

The casing strings in the above table show the final design of each well. It is important to note the presence of intermediate casing in the Red Panda well when there is none in the Giant Panda well, even though the Giant Panda well is deeper. It is expected to encounter a soft formation (likely to cause the wellbore to cave in) and a coal seam in the Red Panda well. This necessitated the use of intermediate casing in the well.

Based on the small interval of pay zone in the Giant Panda well, a perforated completion would be most desirable. In addition, pressure is expected to be low and some water production is expected. This further justifies a perforated completion. There are multiple zones that can be produced in the Giant Panda well. These zones should be perforated and produced simultaneously resulting in higher production rates and faster payout. From examination of the log provided, the Second Vedder sand should be perforated from 4,652 feet to 4,660 feet. The Third Vedder sand should be perforated in two separate intervals, 4,790 feet to 4,800 feet and 4,810 feet to 4,835 feet. Because of low pressure, the well should be hydraulically pumped. Tubing with a diameter of 2 7/8 inch should be used with a 2 1/4 inch pump. The packer should be set around 4,520 feet. This well will produce oil with small amounts of gas.
Like the Giant Panda well, the Red Panda well also has a small interval of pay zone. It is felt that a perforated completion would also be very advantageous in the Red Panda well. There are also multiple zones that can be produced in the Red Panda well. These zones should be perforated and produced simultaneously resulting in higher production rates and faster payout. From examination of the log provided, the Ravenscliff Sand should be perforated from 1,538 feet to 1,543 feet. The Big Lime should be perforated from 2,497 feet to 2,503 feet and the Berea Sand from 3,346 feet to 3,360 feet. Because of higher pressure, the well should not need to be hydraulically pumped. Tubing with a diameter of 2 3/8 inch should be used, and no packers should be necessary.
WELL LOG INTERPRETATION AND RESERVE ESTIMATION

The tables below display the results of the well log analysis for both the Red Panda and the Giant Panda wells. The detailed calculations may be found for each well in the Red Panda Appendix as Table 3 and in the Giant Panda Appendix as Table 3.

The values presented in the above tables as well as those found in the appendix were obtained based on the volumetric estimate of oil in place method using the well log data available. The results are given on a per acre basis.
The equation used to calculate the amount of gas in place, which is relevant to the Red Panda, is as follows:

\[\text{Gas In Place} = \frac{0.4356 \ A h \phi (1-S_w)}{B_{gi}} \]

The thicker Berea formation contains the majority of the natural gas. Therefore, it is expected to be responsible for higher amounts of production when compared to the thinner, shallower Big Lime and Ravenscliff formations.

A porosity value was read from the density log, and a value was calculated using the following equation:

\[\phi = \frac{\rho_{ma} - \rho_b}{\rho_{ma} \cdot \rho_f} \]

where the bulk density, \(\rho_b \), is recorded on the log. Porosity values were calculated by taking an average of the two. The water saturation, \(S_w \), was found with the aid of the formation resistivity factor. Laboratory measurements of fluid samples were not available. Therefore, a correlation was made between reservoir temperature, pressure, and the z-factor to determine the initial formation volume factor. The z-factor was read from a z-factor chart, which can be found in most petroleum engineering handbooks.

The equation corresponding to the Giant Panda is similar to the one above. However, the constant differs due to the fact that we are discussing oil.

\[\text{Oil In Place} = \frac{77.58 \ A h \phi (1-S_w)}{B_{oi}} \]

The greatest amount of hydrocarbons found in the Giant Panda is contained in the deepest, thickest formation, as was the case in the Red Panda. The formation is referred to as the Third Vedder.

In the Giant Panda the porosity was obtained in a similar manner as explained above using the bulk density. However, the porosity read from a neutron log rather than a density log. In this case the initial formation volume factor was known to be 1.2 RB/STB.
The pseudo-pressure and pseudo-time were calculated using a computer program (code shown as Program 1 in the Red Panda Appendix) that utilizes the procedure and the relations presented in the methodology. The pseudo-pressures and pseudo-times were printed to a text file. From there, they were imported into Excel (Table 5 in the Red Panda Appendix) where the four plots mentioned previously were generated:

1. Log-log plot of $\Delta m(P)$ versus t_a (Graph 5 in the Red Panda Appendix)
2. Log-log plot of $\Delta m(P)$ versus Δt (Graph 6 in the Red Panda Appendix)
3. Horner plot (semilog plot) of $m(P)$ versus $(t_p + \Delta t)/ \Delta t$ (Graph 7 in the Red Panda Appendix)
4. Cartesian plot of $m(P)$ versus P (Graph 8 in the Red Panda Appendix)

From Graph 5: $\Delta m(P)$ versus t_a, the last point on the straight unity-slope line is:

$t_a^* = 7*10^5$

$\Delta m(P) = 2.5*10^8$ psi2/cp

Then from Graph 6: $\Delta m(P)$ versus Δt, the time when wellbore storage effects end can be calculated. Using the $\Delta m(P) = 2.5*10^8$ psi2/cp found from Graph 5, the corresponding Δt can be read from Graph 6 and was found to be 8 hours. Applying the 50t rule,

$$\frac{t_p + \Delta t}{\Delta t} = \frac{1200 + 50(8hr)}{50(8hr)} = 4.0$$

Having this, a straight line with slope of $-0.1*10^9$ psi2/cp/cycle is drawn on the Horner plot, Graph 7: $m(P)$ versus $(t_p + \Delta t)/ \Delta t$. Pseudo-$P^*$ and pseudo-P_{1hr} can then be read as follows:

$m(P^*) = 1.99*10^9$ psi2/cp

$m(P_{1hr}) = 1.68*10^9$ psi2/cp

The pseudo-P^* was then transformed back to normal pressure using Graph 8 $m(P)$ versus P, extrapolated to $m(P^*)$. This resulted in $P^* = 6511$ psi.
The permeability was then calculated using the previously mentioned equation:

\[
k = -\frac{1637(190 \text{ MCF/D})(662 \text{ deg.R})}{(-0.1*10^9 \text{ psi}^2/\text{cp/cycle})(25 \text{ ft})} = 0.082 \text{ md}
\]

The following z-factor, \(\mu_g\), and \(c_g\) at \(m(P^*)\) were calculated by the computer program:

\[
z = 1.116
\]

\[
\mu_g^* = 0.02832 \text{ cp}
\]

\[
c_g^* = 0.00008163 \text{ psi}^{-1}
\]

Then, the skin factor prime was calculated:

\[
S' = 1.151 \left[\frac{(0.38*10^8 \text{ psi}^2/\text{cp}) - (1.68*10^9 \text{ psi}^2/\text{cp})}{-0.1*10^9 \text{ psi}^2/\text{cp}/\text{cycle}} \right] = 14.85
\]

Then, the turbulence coefficient is:

\[
D = \frac{(5.18*10^{-5})(0.65)}{(0.0283 \text{ cp})(25 \text{ ft})(0.25\text{ ft})(0.082 \text{ md})^{0.2}} = 3.14*10^{-4} \text{ MCF/D}^{-1}
\]

The skin factor is:

\[
S = 14.85 - (3.14*10^{-4} \text{ MCF/D}^{-1})(190 \text{ MCF/D}) = 14.79
\]

The pressure drop due to skin was found to be:

\[
\Delta m(P)_{s} = -0.869(-0.1*10^9 \text{ psi}^2/\text{cp/cycle})(14.79) = 1.285*10^9 \text{ psi}^2/\text{cp}
\]

Finally, the flow efficiency was found using the previously mentioned equation:

\[
E = \frac{(1.99*10^9 \text{ psi}^2/\text{cp}) - (0.38*10^8 \text{ psi}^2/\text{cp}) - (1.285*10^9 \text{ psi}^2/\text{cp})}{(1.99*10^9 \text{ psi}^2/\text{cp}) - (0.38*10^8 \text{ psi}^2/\text{cp})} = 0.34
\]

There are some important things to notice from Graph 5 and Graph 6. If the time was used instead pseudo-time for the log-log plot, one is unable to determine when the well bore storage ends. This because the log-log plot of \(\Delta m(P)\) versus \(\Delta t\) results in a straight line with a slope greater than one, which is impossible. The correction that \(t_a\) provides is more than obvious since it results in a correct log-log plot with a unity-slope. The last point on the straight line gives the time when the well bore storage ends.
GIANT PANDA WELL

After plotting the necessary data and obtaining a value for m, the above formulas were entered into an Excel spread sheet and the following results were computed:

<table>
<thead>
<tr>
<th>Data</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>q (stb/d)</td>
<td>m (psi/log cycle) -150.00</td>
</tr>
<tr>
<td>Porosity</td>
<td>k (mD) 11.83</td>
</tr>
<tr>
<td>visco (cp)</td>
<td>P1hr (psi) 1175.00</td>
</tr>
<tr>
<td>Ct (1/psi)</td>
<td>Skin 0.56</td>
</tr>
<tr>
<td>rw (ft)</td>
<td>D Ps (psi/cycle) 72.88</td>
</tr>
<tr>
<td>h (ft)</td>
<td>Flow efficiency 0.95</td>
</tr>
<tr>
<td>Bo (RB/STB)</td>
<td></td>
</tr>
<tr>
<td>Pi (psi)</td>
<td></td>
</tr>
</tbody>
</table>

Wellbore storage can cause several apparent straight lines to form on the semi-log plot, and it is often difficult to decide which line represents the true behavior of the reservoir. Luckily, the test was conducted for a time long enough so as the wellbore storage effects did not completely mask the transient flow. It must be noted that an accurate value of the initial pressure is necessary to use the log-log plot of ΔP versus t, otherwise the shape and position of the curve produced will be incorrect. Wellbore storage can easily lead an engineer to misinterpret pressure transient test data.
RESERVOIR PERFORMANCE PREDICTION

RESERVOIR FLUID PROPERTY CORRELATIONS

The results for the reservoir fluid property correlation computer program (Program in the General Appendix) were extremely pleasing. The user interface may be viewed in the General Appendix as Figure 10. The z-factor chart generated by the program (Figure 11) was compared to the Standing and Katz chart (Figure 2) with excellent results. The generated gas viscosity chart (Figure 12) shows a decrease in gas viscosity as reservoir pressure decreases as to be theoretically expected. Values read from the generated gas viscosity chart were very accurate when compared to those obtained by the method previously described using Figures 3 and 4. Finally, as theory indicates, the generated oil viscosity chart shows an increase in oil viscosity as reservoir pressure decreases (given that pressure is below the bubble point). Oil viscosity values from the generated graph (Figure 13) were also compared to those obtained by the method previously described that uses Figures 5 and 6. These values were matched with incredible accuracy.

RED PANDA WELL

The computer program (Program 2) developed for the pressure profile determination of the Red Panda gas well runs extraordinarily well. The user interfaces can be seen as Figures 3, 4, and 5 in the Red Panda Appendix. The resulting maximum constant rate that can be maintained for seven years is 160.8 MCF/D. At the end of seven years of production with this flow rate, reservoir pressure is 248 psia, well-flowing pressure is 100 psia (abandonment pressure), wellhead pressure is 85 psia. The cumulative gas produced is 415.5 MMCF.

The pseudo-pressure profile can be seen as Graph 9 in the Red Panda Appendix. It is vital to note that reservoir pseudo-pressure and well-flowing pseudo-pressure decrease simultaneously with a constant Δm(P). This is in agreement with the previous assertion that Δm(P) must remain constant if a constant flow rate is maintained. The actual pressure profile can be seen as Graph 10. This displays the profiles for reservoir pressure, well-flowing pressure, and wellhead pressure. It is interesting to note that reservoir pressure and well-flowing pressure do not decrease with a constant ΔP. In fact, ΔP increases as pressure decreases. This, however, is in disagreement with the earlier theory that stated that ΔP must be constant! Why is this so? This phenomenon is not a mistake. Graph 11 shows a graph of pseudo-pressure versus pressure. The answer to the previous dilemma lies within this graph. It is seen that for pressures above 700 psia, the data is pretty much linear. At pressures less than 700 psia, the data begins to
concave upward and becomes very nonlinear. This explains why ΔP begins to increase around 700 psia. As the pressure gets lower, the pseudo-pressure deviates more and more. Therefore, ΔP increases more significantly until abandonment pressure is reached.

GIANT PANDA WELL

With the aid of the computer program (Program) the maximum production schedule is achieved with an allowable rate of 245 STB/D. This initial flow rate results in 422,000 STB of oil and 762 MMCF of gas produced in 7 years. The final flow rate is 37 STB/D at the abandonment P_{wf} of 100 psia. The pressure profile can be seen as Graph 10. The corresponding production schedule is Graph 11. As one can see, the production rate remains constant for the first few months of production and experiences a sharp decline due to the gas coming out of solution. This is to be expected as the reservoir pressure falls below the saturation pressure.

It would be ideal to find a constant rate that would result in an equivalent cumulative oil production at the end of the 7 years. To do so, one can estimate a rate that would provide us with the same area under the constant rate curve as is found under the maximum production rate curve. A rate of approximately 75 STB/D will accomplish this task. The ideal constant production schedule is seen in Graph 12, while the actual production schedule for 75 STB is in Graph 13. However, even at such a low flow rate the reservoir will still eventually fall below the bubble point pressure. As one can see, the production rate remains constant for a longer period of time (about one year of production) and then experiences a decline due to the gas coming out of solution, although not as sharp of a decline as the maximum schedule. This is to be expected as the reservoir pressure falls below the saturation pressure. With an initial flow rate of 75 STB/D, the cumulative oil produced is 320,000 STB and the cumulative gas produced is 360 MMCF. The final flow rate is found to be about 29 STB/D, and the reservoir pressure is 725 psia. In order to extract the maximum amount of oil and gas it would take 22.8 years.

If the goal were to actually use a constant rate for the duration of the 7 years we would need to stay above the bubble point pressure in the reservoir. This can be accomplished at the low rate of 10 STB/D. By producing the well at this rate we would obtain less than 25% of the maximum schedule in oil, only 99,800 STB, and only 5% of the maximum schedule in gas, 43 MMCF. This well could be produced for over 171 years before reaching the abandonment pressure. The final flow rate would be 2 STB/D. This production schedule compared to that of the maximum schedule is in Graph 14 with the corresponding pressure profile as Graph 15.

The user interfaces with the results for these scenarios are shown as Figures 2, 3, and 4.
MONTE CARLO SIMULATION AND ECONOMIC EVALUATION

The probability distributions for the times required for drilling and completing each well were assumed to be the same but with different x values for the Giant Panda and the Red Panda. For the Red Panda well, Graph 1 and Graph 2 show the probability distribution used while determining the days required for drilling and the days required for completion, respectively in the Red Panda Appendix. For the Giant Panda well, Graph 4 and Graph 5 show the probability distribution used while determining the days required for drilling and the days required for completion, respectively in the Giant Panda Appendix. The investment was then calculated for both wells. The investment required for each, as well as the components, can be seen in Table 4 of the Red Panda Appendix and in Table 4 of the Giant Panda Appendix.

The results obtained from analyzing the production data from the Giant Panda and Red Panda wells in conjunction with the economic assumptions were found to be as expected. The Giant Panda oil well easily outperforms the Red Panda gas well. The gas, alone, produced from the Giant Panda well is predicted to rival that of the Red Panda well. Using a conservative estimate of $20/bbl for oil and $3/MCF for gas, it is obvious that the more lucrative investment will be the Giant Panda well. This can be deduced from observing the NPV profile where the DCROR for the Giant Panda is interpolated to be approximately 10,000%. Although the investment would not begin to lose money on the Red Panda well until an interest rate of about 180% was reached, when compared to the Giant Panda’s 10,000% it becomes obvious which is the better choice. The spreadsheets containing the calculations for net present value are seen in Table 6 in the Red Panda Appendix and in Table 5 in the Giant Panda Appendix. The net present value profile may be viewed as Graph 3 in the Red Panda Appendix and as Graph 8 in the Giant Panda Appendix.

As was stated earlier, the probability distributions for the times required for drilling and completing each well were assumed to be the same for the Giant Panda and the Red Panda. These distributions influence the shape of the DCFROR probability distribution. This is evident in the skewed shape of the graph. For the Red Panda well, the probability distribution is shown as Graph 4 in the Red Panda Appendix. For the Giant Panda well, the probability distribution is shown as Graph 9 in the Giant Panda Appendix. Since the DCFROR represents the interest rate at which the company starts to lose money on the project, the higher DCFROR generally represents the more lucrative project. In this case, the cash generated from the Giant Panda well is far more than that generated from the Red Panda well. It is concluded by Western Panda Corporation that the Giant Panda oil well in California will far outperform the Red Panda gas well in West Virginia.
CONCLUSION

The casing design of the Red Panda well in West Virginia consists of 4 1/2-inch, J-55, 9.5 pounds per foot production casing, 8 5/8-inch, H-40, 28 pounds per foot intermediate casing, and 11 3/4-inch, H-40, 32.3 pounds per foot surface casing. A perforated, multiple-zone completion would be most desirable. The Ravenscliff Sand should be perforated from 1,538 feet to 1,543 feet, the Big Lime from 2,497 feet to 2,503 feet, and the Berea Sand from 3,346 feet to 3,360 feet. The casing design of the Giant Panda well in California consists of 7-inch, J-55, 23 pounds per foot production casing and 9 5/8-inch, H-40, 32.3 pounds per foot surface casing. A perforated, multiple-zone completion would be most desirable. From examination of the log provided, the Second Vedder sand should be perforated from 4,652 feet to 4,660 feet. The Third Vedder sand should be perforated in two separate intervals, 4,790 feet to 4,800 feet and 4,810 feet to 4,835 feet.

Interpretation of available well logs facilitated the estimation of original oil and gas in place on a per acre basis for both wells using the volumetric method. The Red Panda well was found to have an original gas in place of 12,083 MCF/acre. The productive zones have an average porosity of 10.1% and an average water saturation of 28%. The Giant Panda well will produce from a solution gas drive reservoir with an original oil in place of 80,616 STB/acre. The productive zones have an average porosity of 34% and an average water saturation of 27%.

From analysis of available well test data, initial formation pressure, permeability, skin factor, and flow efficiency were estimated. The well test analysis for the Red Panda gas well utilized the data that was made available from a build-up test. The results obtained were initial reservoir pressure of 6511 psi, permeability of 0.082 md, skin factor of 14.79, and flow efficiency of 34 percent. The well test analysis for the Giant Panda oil well utilized the data that was made available from a drawdown test. The initial reservoir pressure was found to be 2400 psi, with a permeability of 11.83 md, skin factor of 0.56, and flow efficiency of 95 percent.

The resulting maximum constant rate for the Red Panda well that can be maintained for seven years is 160.8 MCF/D. At the end of seven years of production with this flow rate, reservoir pressure is 248 psia, well-flowing pressure is 100 psia (abandonment pressure), wellhead pressure is 85 psia. The cumulative gas produced is 415.5 MMCF. For the Giant Panda oil well in California is it our recommendation to implement the maximum production schedule of 245 STB/D. It would not be prudent to produce the Giant Panda at a constant rate and only achieve 25% of the potential oil production and 5% of the potential gas production. This flow rate will result in a cumulative production of 422,000 STB of oil and 762 MMCF of gas at the end of 7
years reaching the abandonment pressure. The final flow rate will be 37 STB/D. It is interesting to note that the Giant Panda oil well will produce more gas than the Red Panda gas well.

Monte Carlo simulation was used in order to minimize the uncertainty of oil and gas prices, operation costs and the days required for drilling and completion. Uniform distributions were used for oil price (median value of $20/BBL) and gas price ($3/MCF). Triangular distributions were used for operating costs (median values of $0.75/BBL and $0.25/MCF). Discrete probability distributions were used for the days required for drilling and completion, with both skewed in a manner that allows for possible problems that may increase drilling or completion time. The initial investment for the Red Panda well is slightly under $90,000. The net cash flow will be approximately $1 million, with net present values of $860,000 and $515,000 at the interest rates of 5% and 20%, respectively. The rate of return for the Red Panda well is around 180%. Likewise, the initial investment for the Giant Panda well is slightly over $95,000. The net cash flow, over $10 million, is significantly higher than the Red Panda well. At interest rates of 5% and 20%, the net present values are $9.3 million and $7.5 million, respectively. The rate of return for the Giant Panda well is over 10,000%.

Western Panda Corporation feels very confident in the results obtained from this study. It has been shown that the Giant Panda well, an oil well located in California, will far outperform the Red Panda well, a gas well located in West Virginia. The Giant Panda well is a very certain investment that will generate a significant amount of money at all normal interest rates. Unless interest rates skyrocket to over 10,000%, the Giant Panda well is sure to make money for the company. It is therefore the indisputable and absolute recommendation of Western Panda Corporation that the company proceed forward with the Giant Panda well as a ‘GO’ and the Red Panda well as a ‘NO GO’.
REFERENCES

Aminian, Kashy, Ph.D. "Natural Gas Production and Storage Engineering." West Virginia University. Morgantown, WV.

Popa, S. Andrei. Personal communication concerning well test analysis, material balance calculations, and production schedule prediction. West Virginia University. Morgantown, WV. 2000.

GENERAL APPENDIX

FIGURE 1: TYPICAL LOGGING CABLE

![Diagram of Typical Logging Cable]

- **TYPICAL LOGGING CABLE**
 - Outer steel jacket
 - Inner steel jacket
 - Wrapping
 - Copper wires

- **Typical downhole logging tool**
 - Sondle
 - Cart
 - Weak point
 - Wire line
 - Torpedo
 - Bridle (in cond)
 - Brushed
 - Panels & Recorder
 - Drum
FIGURE 2: STANDING AND KATZ
FIGURE 3: GAS VISCOSITY AT ATMOSPHERIC PRESSURE
FIGURE 4: GAS VISCOSITY RATIO
FIGURE 5: DEAD OIL VISCOSITY
FIGURE 6: GAS-SATURATED OIL VISCOSITY
FIGURE 7: Uniform Distribution
FIGURE 8: TRIANGULAR DISTRIBUTION
FIGURE 9: DISCRETE PROBABILITY DISTRIBUTION

\[P_1 + P_2 + P_3 \]

\[P_1 + P_2 \]

\[P_1 \]
FIGURE 10: RESERVOIR PROPERTY CORRELATIONS INTERFACE
FIGURE 11: GENERATED Z-FACTOR

Compressibility Factors for Natural Gases

(Presented, as per the Robson Procedure used to evaluate Standing and Ket's Solutions)
FIGURE 12: GENERATED GAS VISCOSITY

(Carr, Kobayashi, and Burrow Method and Dempsey Equation)
FIGURE 13: GENERATED OIL VISCOSITY

Oil Viscosity

Pressure (psia)

Oil Viscosity (mPa·s)
PROGRAM: RESERVOIR PROPERTY CORRELATIONS

Option Explicit

'Declare variables for user input
Private Tres As Double, Pres As Double, API As Double, GasGrav As Double

'Declare variables used in calculations
Private Tpr As Double, Ppr As Double, Rs As Double
Private Z As Double, GasVisc As Double

Private Sub cmdGraphZ_Click()

'Read user input values
Tres = (Val(txtTres1.Text)) + 460
Pres = Val(txtPres1.Text)

'Declare Variables
Dim GraphZ(0 To 5000, 1 To 10) As Double, GraphTpr(2 To 10) As Double
Dim j As Integer, k As Integer
Dim Rows As Integer, RowsMax As Integer, no_columns As Double

'Create array with Tpr values for z-factor chart
' (given by Shahab on project handout)
GraphTpr(2) = 3#
GraphTpr(3) = 2.4
GraphTpr(4) = 2#
GraphTpr(5) = 1.8
GraphTpr(6) = 1.6
GraphTpr(7) = 1.4
GraphTpr(8) = 1.3
GraphTpr(9) = 1.2
GraphTpr(10) = 1.1

'Loop for Tpr values (above)
For j = 2 To 10 Step 1
 Tpr = GraphTpr(j)
 Rows = 0
 'Loop for Ppr values (use 0-15, like Standing & Katz chart)
 For Ppr = 0 To 15 Step 0.2
 Rows = Rows + 1
 If Ppr = 0 Then
 GraphZ(Rows, j) = 1#
 Else
 'Calculate z-factor (go to function)
 GraphZ(Rows, j) = Z_Factor(Tpr, Ppr)
 End If
 Next Ppr
 RowsMax = Rows - 1
Next j

'Display results graphically
Form2.chtZFactor.chartType = VtChChartType2dXY
With Form2.chtZFactor
.ColumnCount = 18
.RowCount = RowsMax
no_columns = 0
For j = 2 To 10 Step 1
 For k = 1 To 2 Step 1
 no_columns = no_columns + 1
 For Rows = 1 To RowsMax Step 1
 .ColumnLabel = "Tpr = " & GraphTpr(j)
 .Row = Rows
 .Data = GraphZ(Rows, 1)
 Next
 Next
 .Plot.UniformAxis = False
 .Visible = True
 Next
End With
Form2.Show
End Sub

Private Sub cmdGraphmuo_Click()
'Read user input values
Tres = (Val(txtTres2.Text)) + 460
Pres = Val(txtPres2.Text)
API = Val(txtAPI.Text)
GasGrav = Val(txtGrav2.Text)

'Declare variables
Dim Graphmuo() As Double, P As Double
Dim no_columns As Integer, Rows As Integer, k As Integer, Counter As Integer
ReDim Graphmuo(0 To Pres / 5, 1 To 2) As Double

'Loop for pressure from 0 to initial
For P = 0 To Pres Step 5
 Graphmuo(P / 5, 1) = P
 'Calculate oil viscosity (go to function)
 Graphmuo(P / 5, 2) = Oil_Viscosity(Tres, API, Rs)
Next P

'Display results graphically
Form4.chtOilVisc.chartType = VtChChartType2dXY
With Form4.chtOilVisc
 .ChartData = Graphmuo
 .Plot.UniformAxis = False
 .Visible = True
End With
Form4.Show
End Sub

Private Sub cmdGraphmug_Click()

'Read user input values
Tres = (Val(txtTres1.Text))
Pres = Val(txtPres1.Text)
GasGrav = Val(txtGrav1.Text)

' Declare variables
Dim Graphmug() As Double, P As Double
Dim no_columns As Integer, Rows As Integer, k As Integer
ReDim Graphmug(0 To Pres / 5, 1 To 2) As Double

' Calculate pseudo-reduced temperature (go to function)
Tpr = Calc_Tpr(GasGrav, Tres)

' Loop for pressure from 0 to initial
For P = 0 To Pres Step 5
 ' Calculate pseudo-reduced pressure (go to function)
Ppr = Calc_Ppr(GasGrav, P)
 ' Calculate gas viscosity (go to function)
 Graphmug(P / 5, 2) = Gas_Viscosity(GasGrav, Tpr, Ppr)
Next P

' Display results graphically
Form3.chtGasVisc.chartType = VtChChartType2dXY
With Form3.chtGasVisc
 .ChartData = Graphmug
 .Plot.UniformAxis = False
 .Visible = True
End With
Form3.Show

End Sub

Private Function Calc_Ppr(Grav As Double, P As Double) As Double

' Declare variables
Dim Ppc As Double

' Calculate pseudo-critical pressure
Ppc = 709.6 - (58.7 * Grav)

' Calculate pseudo-reduced pressure
Calc_Ppr = P / Ppc

End Function

Private Function Calc_Tpr(Grav As Double, T As Double) As Double

' Declare variables
Dim Tpc As Double

' Calculate pseudo-critical pressure
Tpc = 170.5 + (307.3 * Grav)

' Calculate pseudo-reduced pressure
Calc_Tpr = T / Tpc

End Function

Private Function Gas_Viscosity(Grav As Double, Tr As Double, Pr As Double) As Double

' Declare variables
Dim Part1 As Double, Part2 As Double, Visc1 As Double
Dim a0 As Double, a1 As Double, a2 As Double, a3 As Double, a4 As Double
Dim a5 As Double, a6 As Double, a7 As Double, a8 As Double, a9 As Double
Dim a10 As Double, a11 As Double, a12 As Double, a13 As Double, a14 As Double
Dim a15 As Double, a16 As Double

'Calculate gas viscosity using Carr, Kobayashi, & Burrows Method
' and Dempsey Equation
Part1 = (1.709 * (10 ^ -5)) - (2.062 * (10 ^ -6))
Part2 = (8.188 * (10 ^ -3)) - ((6.15 * (10 ^ -3)) * ((Log(Grav)) / (Log(10))))
Visc1 = (Part1 * Tr) + Part2
a0 = -2.4621182
a1 = 2.97054714 * Pr
a2 = -2.86264054 * (10 ^ -1) * (Pr ^ 2)
a3 = 8.05420522 * (10 ^ -3) * (Pr ^ 3)
a4 = 2.80860949
a5 = -3.49803305 * Pr
a6 = 3.6037302 * (10 ^ -1) * (Pr ^ 2)
a8 = -7.93385684 * (10 ^ -1)
a9 = 1.39643306 * Pr
a10 = -1.49144925 * (10 ^ -1) * (Pr ^ 2)
a11 = 4.41015512 * (10 ^ -3) * (Pr ^ 2)
a12 = 8.39387176 * (10 ^ -2)
a14 = 2.03367881 * (10 ^ -2) * (Pr ^ 2)
a15 = 6.09579263 * (10 ^ -4) * (Pr ^ 2)
a16 = a0 + a1 + a2 + a3 + (Tr * (a4 + a5 + a6 + a7)) + ((Tr ^ 2) * _
 (a8 + a9 + a10 + a11)) + ((Tr ^ 3) * (a12 + a13 + a14 + a15))
Gas_Viscosity = (Exp(a16)) * Visc1 / Tr

End Function

Private Function Oil_Viscosity(T As Double, API As Double, Rs As Double) As Double
'Declare variables
Dim OilViscZ As Double, OilViscY As Double, OilViscX As Double
Dim DeadOilVisc As Double, OilViscA As Double, OilViscB As Double

'Calculate oil viscosity using correlations from PNGE 232
OilViscZ = 0.5644 * ((Log(T)) / (Log(10)))
OilViscY = 1.8653 - (0.025086 * API)
OilViscX = 10# ^ (OilViscY - OilViscZ)
DeadOilVisc = (10# ^ OilViscX) - 1
OilViscB = (5.44 * ((Rs + 150#) ^ -0.338))
Oil_Viscosity = OilViscA * (DeadOilVisc ^ OilViscB)

End Function

Private Function Solution_GOR(Grav As Double, P As Double, degAPI As Double, T As Double) As Double
'Declare variables
Dim RsC1 As Double, RsC2 As Double, RsC3 As Double

'Calculate solution gas-oil ratio using correlations from PNGE 232
If API <= 30 Then
 RsC1 = 0.0362
 RsC2 = 1.0937
RsC3 = 25.724
Else
 RsC1 = 0.0178
 RsC2 = 1.187
 RsC3 = 23.931
End If
Solution_GOR = RsC1 * Grav * (P ^ RsC2) * (Exp((RsC3 * degAPI) / (T + 460)))
End Function

Private Function Z_Factor(Tr As Double, Pr As Double) As Double
 'Declare variables
 Dim aDen As Double, bDen As Double, cDen As Double, dDen As Double
 Dim eDen As Double, fDen As Double, gDen As Double, a1Den As Double
 Dim b1Den As Double, c1Den As Double, d1Den As Double, e1Den As Double
 Dim f1Den As Double, a2Den As Double, b2Den As Double, c2Den As Double
 Dim d2Den As Double, e2Den As Double, f2Den As Double
 Dim F1Density As Double, F2Density As Double
 Dim DensityK As Double, DensityK1 As Double, DiffDensity As Double

 'Calculate density and z-factor with Dranchuk, Purvis, & Robinson
 ' Procedure to evaluate Standing & Katz Relations
 aDen = 0.06423
 bDen = (0.5353 * Tr) - 0.6123
 cDen = (0.3151 * Tr) - 1.0467 - (0.5783 / (Tr ^ 2))
 dDen = Tr
 eDen = 0.6816 / (Tr ^ 2)
 fDen = 0.6845
 gDen = 0.27 * Pr
 DensityK = 0.27 * Pr / Tr
 DiffDensity = 100
 Do
 a1Den = aDen * (DensityK ^ 6)
 b1Den = bDen * (DensityK ^ 3)
 c1Den = cDen * (DensityK ^ 2)
 d1Den = dDen * DensityK
 e1Den = eDen * (DensityK ^ 3)
 f1Den = (1 + (fDen * (DensityK ^ 2))) * (Exp(-fDen * (DensityK ^ 2)))
 F1Density = a1Den + b1Den + c1Den + d1Den + (e1Den * f1Den) - gDen
 a2Den = 6 * aDen * (DensityK ^ 5)
 c2Den = 2 * cDen * DensityK
 d2Den = dDen
 e2Den = eDen * (DensityK ^ 2)
 f2Den = (3 + (fDen * (DensityK ^ 2)) * (3 - (2 * fDen * (DensityK ^ 2)))) * (Exp(-fDen * (DensityK ^ 2)))
 F2Density = a2Den + b2Den + c2Den + d2Den + (e2Den * f2Den)
 DensityK1 = DensityK - (F1Density / F2Density)
 DensityK = DensityK1
 Loop Until (DiffDensity < 0.0001)
 Z_Factor = (0.27 * Pr) / (DensityK1 * Tr)
End Function
RED PANDA APPENDIX

FIGURE 1: WELL LOCATION MAP

Wyoming County, West Virginia
FIGURE 2: GAS MATERIAL BALANCE
FIGURE 3: INPUT USER INTERFACE
FIGURE 4: GAS PROPERTIES USER INTERFACE

<table>
<thead>
<tr>
<th>Criteria Number</th>
<th>Pressure, psi</th>
<th>Z-Factor</th>
<th>Gas Volume Factor, BBL/SCF</th>
<th>Gas Viscosity, cp</th>
<th>Gas Compressibility Factor, SCF/ft^3</th>
<th>Pseudo-Pressure m(P), psi^2/cp</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.00</td>
<td>0.9997</td>
<td>2.82328</td>
<td>0.01109</td>
<td>1.00014</td>
<td>90.28</td>
</tr>
<tr>
<td>2</td>
<td>2.00</td>
<td>0.9997</td>
<td>1.41144</td>
<td>0.01108</td>
<td>0.50014</td>
<td>361.12</td>
</tr>
<tr>
<td>3</td>
<td>3.00</td>
<td>0.9996</td>
<td>0.94723</td>
<td>0.01108</td>
<td>0.3348</td>
<td>812.95</td>
</tr>
<tr>
<td>4</td>
<td>4.00</td>
<td>0.9994</td>
<td>0.70702</td>
<td>0.01108</td>
<td>0.25014</td>
<td>1444.59</td>
</tr>
<tr>
<td>5</td>
<td>5.00</td>
<td>0.9993</td>
<td>0.56564</td>
<td>0.01108</td>
<td>0.20014</td>
<td>2257.25</td>
</tr>
<tr>
<td>6</td>
<td>6.00</td>
<td>0.9991</td>
<td>0.47121</td>
<td>0.01108</td>
<td>0.16681</td>
<td>3250.56</td>
</tr>
<tr>
<td>7</td>
<td>7.00</td>
<td>0.999</td>
<td>0.40384</td>
<td>0.01108</td>
<td>0.143</td>
<td>4424.55</td>
</tr>
<tr>
<td>8</td>
<td>8.00</td>
<td>0.9989</td>
<td>0.3533</td>
<td>0.01109</td>
<td>0.12514</td>
<td>5779.23</td>
</tr>
<tr>
<td>9</td>
<td>9.00</td>
<td>0.9987</td>
<td>0.31401</td>
<td>0.01109</td>
<td>0.11125</td>
<td>7314.61</td>
</tr>
<tr>
<td>10</td>
<td>10.00</td>
<td>0.9986</td>
<td>0.28256</td>
<td>0.01109</td>
<td>0.10014</td>
<td>9030.72</td>
</tr>
<tr>
<td>11</td>
<td>11.00</td>
<td>0.9984</td>
<td>0.25884</td>
<td>0.01109</td>
<td>0.09105</td>
<td>10927.59</td>
</tr>
</tbody>
</table>
FIGURE 5: PERFORMANCE PREDICTION USER INTERFACE

Western Panda Corporation: Gas Reservoir Performance Prediction

Deliverability equation
A coefficient
B coefficient

Run Constant Rate

<table>
<thead>
<tr>
<th>Time, months</th>
<th>Flow Rate, MCF/D</th>
<th>Gas Produced, MCF per month</th>
<th>Total Gas Produced, MMCF</th>
<th>Reservoir Pressure, psia</th>
<th>Well Flowing Pressure, psia</th>
<th>Wellhead Pressure, psia</th>
<th>Recovery Factor, %</th>
<th>Reservoir Pseudo Pressure, psia*2/gp</th>
<th>Flo</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>160.8</td>
<td>4888.3</td>
<td>4.89</td>
<td>1400</td>
<td>1380</td>
<td>1151</td>
<td>1</td>
<td>177352749.59</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>160.8</td>
<td>4888.3</td>
<td>9.78</td>
<td>1388</td>
<td>1368</td>
<td>1142</td>
<td>2</td>
<td>174418729.64</td>
<td>16</td>
</tr>
<tr>
<td>3</td>
<td>160.8</td>
<td>4888.3</td>
<td>14.66</td>
<td>1376</td>
<td>1356</td>
<td>1132</td>
<td>3</td>
<td>17150659.29</td>
<td>16</td>
</tr>
<tr>
<td>4</td>
<td>160.8</td>
<td>4888.3</td>
<td>19.55</td>
<td>1364</td>
<td>1344</td>
<td>1122</td>
<td>4</td>
<td>168613696.11</td>
<td>16</td>
</tr>
<tr>
<td>5</td>
<td>160.8</td>
<td>4888.3</td>
<td>24.44</td>
<td>1352</td>
<td>1332</td>
<td>1112</td>
<td>4</td>
<td>165742947.92</td>
<td>16</td>
</tr>
<tr>
<td>6</td>
<td>160.8</td>
<td>4888.3</td>
<td>29.33</td>
<td>1340</td>
<td>1320</td>
<td>1100</td>
<td>6</td>
<td>162895683.70</td>
<td>15</td>
</tr>
<tr>
<td>7</td>
<td>160.8</td>
<td>4888.3</td>
<td>34.22</td>
<td>1328</td>
<td>1307</td>
<td>1092</td>
<td>7</td>
<td>160067223.52</td>
<td>15</td>
</tr>
<tr>
<td>8</td>
<td>160.8</td>
<td>4888.3</td>
<td>39.11</td>
<td>1314</td>
<td>1293</td>
<td>1081</td>
<td>8</td>
<td>156793922.84</td>
<td>15</td>
</tr>
<tr>
<td>9</td>
<td>160.8</td>
<td>4888.3</td>
<td>43.99</td>
<td>1302</td>
<td>1281</td>
<td>1071</td>
<td>9</td>
<td>156793922.84</td>
<td>14</td>
</tr>
<tr>
<td>10</td>
<td>160.8</td>
<td>4888.3</td>
<td>48.88</td>
<td>1290</td>
<td>1269</td>
<td>1061</td>
<td>10</td>
<td>151254270.15</td>
<td>14</td>
</tr>
<tr>
<td>11</td>
<td>160.8</td>
<td>4888.3</td>
<td>53.77</td>
<td>1278</td>
<td>1257</td>
<td>1052</td>
<td>11</td>
<td>146517485.43</td>
<td>14</td>
</tr>
<tr>
<td>12</td>
<td>160.8</td>
<td>4888.3</td>
<td>58.66</td>
<td>1266</td>
<td>1245</td>
<td>1042</td>
<td>12</td>
<td>145802080.03</td>
<td>14</td>
</tr>
</tbody>
</table>
GRAPH 1: DAYS REQUIRED FOR DRILLING

Red Panda
Days Required for Drilling: Discrete Probability Distribution

Days
0.10
0.26
0.55
0.10

Probability
0.00
0.10
0.20
0.30
0.40
0.50
0.60
GRAPH 2: DAYS REQUIRED FOR COMPLETION

Red Panda
Days Required for Completion: Discrete Probability Distribution
GRAPH 3: PRESENT VALUE PROFILE

Red Panda: Sample Net Present Value Profile

Net Present Value, $

Interest Rate

$2,200,000

$2,000,000

$1,800,000

$1,600,000

$1,400,000

$1,200,000

$1,000,000

$800,000

$600,000

$400,000

$200,000

$0

-200,000

3% 20% 40% 60% 80% 100% 120% 140% 160% 180% 200%
GRAPH 4: RATE OF RETURN PROBABILITY DISTRIBUTION

Red Panda:
Probability Distribution of Anticipated Rate of Return

<table>
<thead>
<tr>
<th>Rate of Return (%)</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>179.0</td>
<td>0.15</td>
</tr>
<tr>
<td>179.1</td>
<td>0.15</td>
</tr>
<tr>
<td>179.3</td>
<td>0.30</td>
</tr>
<tr>
<td>179.6</td>
<td>0.15</td>
</tr>
<tr>
<td>179.7</td>
<td>0.15</td>
</tr>
<tr>
<td>179.0</td>
<td>0.15</td>
</tr>
<tr>
<td>179.1</td>
<td>0.05</td>
</tr>
</tbody>
</table>
GRAPH 5: CHANGE IN PSEUDO-PRESSURE VERSUS PSEUDO-TIME
GRAPH 6: CHANGE IN PSEUDO-PRESSURE VERSUS CHANGE IN TIME
GRAPH 7: HORNER PLOT

GRAPH 2: Horner plot $m(p) \times (tp+dt)/dt$
GRAPH 8: PSEUDO-PRESSURE versus PRESSURE

GRAPH 4: Cartesian Plot m(P) vs P

Pseudopressure m(P), psia/cp

Pressure, psi
GRAPH 9: PSEUDO-PRESSURE PROFILE
GRAPH 10: PRESSURE PROFILE

[Graph showing pressure profile over time with three lines representing different pressure measurements: Reservoir Pressure, Bottom Hole Flowing Pressure, and Well Head Pressure.]
GRAPH 11: PSEUDO-PRESSURE versus PRESSURE
TABLE 1: Fracture Gradient

<table>
<thead>
<tr>
<th>Formation Depth, ft</th>
<th>Thickness, ft</th>
<th>Density, g/cm³</th>
<th>Average Density, g/cm³</th>
</tr>
</thead>
<tbody>
<tr>
<td>Top 2300</td>
<td>Bottom 2300</td>
<td>2300</td>
<td>2.68</td>
</tr>
<tr>
<td>2300</td>
<td>2750</td>
<td>450</td>
<td>2.71</td>
</tr>
<tr>
<td>2750</td>
<td>3468</td>
<td>718</td>
<td>2.68</td>
</tr>
</tbody>
</table>

Overburden Stress = 4,032 psig
Formation Pore Pressure = 1,522 psig
Fracture Pressure = 2,359 psig

Fracture Gradient = 13.080 ppg
TABLE 2: Casing Design

Casing Design: Red Panda Well

Total Depth =	9469 ft
Bottomhole Temperature =	76 degrees F
Formation Gradient =	0.433 psi/ft
Fracture Gradient =	13.08 ppg
Drilling Fluid Weight =	8.33 ppg
Air (use fresh water)	

Casing Type = Production	Intermediate	Surface	
Casing Outer Diameter =	4.5	6.625	11.75 in
Setting Depth =	2,460	1,376	226 ft

BURST

| Bottomhole Pressure = | 2,413 | 957 | 157 psig |
| Gas Gradient = | 0.0469 | 0.0188 | 0.0033 psi/ft |

Internal Pressures

| Top = | 2,250 | 932 | 156 psig |
| Bottom = | 3,752 | 1,528 | 157 psig |

External Pressures

| Top = | 0 | 0 | 0 psig |
| Bottom = | 1,502 | 596 | 97 psig |

Resultant Pressures

| Top = | 2,250 | 932 | 156 psig |
| Bottom = | 2,251 | 932 | 59 psig |

Design Pressures

| Top = | 2,475 | 1,025 | 171 psig |
| Bottom = | 2,476 | 1,025 | 65 psig |

Minimum Casing Requirements

Grade =	H-40	H-40	H-40
Nominal Weight =	9.5	28	32.3 #/ft
Inner Diameter =	4.09	8.017	0.312 in
Internal Pressure Resistance =	3,190	2,470	2,270 psi

Actual Casing Used

Grade =	J-55	H-40	H-40
Nominal Weight =	9.5	28	32.3 #/ft
Inner Diameter =	4.09	8.017	9.001 in
Internal Pressure Resistance =	4,380	2,470	2,270 psi

Used Safety Factor

| SF = | 1.65 | 2.65 | 38.40 |
COLLAPSE

Internal Pressures

Top = 0 0 0 psig
Bottom = 0 07 0 psig

External Pressures

Top = 0 0 0 psig
Bottom = 1,502 596 97 psig

Resultant Pressures

Top = 0 0 0 psig
Bottom = 1,502 499 97 psig

Design Pressures

Top = 0 0 0 psig
Bottom = 1,662 548 107 psig

Minimum Casing Requirements

Grade = H-40 H-40 H-40
Nominal Weight = 9.5 28 32.3 #/ft
Inner Diameter = 4.09 8.017 9.001 in
Collapse Resistance = 2,760 1,610 1,370 psi

Actual Casing Used

Grade = J-55 H-40 H-40
Nominal Weight = 9.5 28 32.3 #/ft
Inner Diameter = 4.09 8.017 9.001 in
Collapse Resistance = 3,310 1,610 1,370 psi

Used Safety Factor

SF = 2.20 3.23 14.08

TENSION

Hydrostatic Fluid Pressure = 1,502 596 97 psig
Metal Area at Bottom = 2,766 7,947 44,803 in²
Axial Tension = 26,791 33,791 2,901 lbf
Design Tension = 128,791 133,791 102,901 lbf

Minimum Casing Requirements

Grade = J-55 H-40 H-40
Nominal Weight = 9.5 28 32.3 #/ft
Inner Diameter = 4.09 8.017 9.001 in
Pipe Body Yield Strength = 152,000 318,000 365,000 lbf

Actual Casing Used

Grade = J-55 H-40 H-40
Nominal Weight = 9.5 28 32.3 #/ft
Inner Diameter = 4.09 8.017 9.001 in
Pipe Body Yield Strength = 152,000 318,000 365,000 lbf

Used Safety Factor

SF = 5.28 9.41 3.55
TABLE 3: RESERVE ESTIMATION

<table>
<thead>
<tr>
<th>Depth, ft</th>
<th>p_b, g/cc</th>
<th>ϕ_{31}, %</th>
<th>ϕ_{D2}, %</th>
<th>ϕ_1, %</th>
<th>R_{ID}, Ω-m</th>
<th>R_s, Ω-m</th>
<th>F_R</th>
<th>S_w</th>
<th>G, MCFG/acre</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ravenschell</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1538</td>
<td>2.5ε</td>
<td>7.7</td>
<td>6.0</td>
<td>6.9</td>
<td>78.0</td>
<td>70.0</td>
<td>42.3</td>
<td>3.35</td>
<td>171.7</td>
</tr>
<tr>
<td>1640</td>
<td>2.4ε</td>
<td>3.7</td>
<td>14.0</td>
<td>13.8</td>
<td>70.0</td>
<td>70.0</td>
<td>42.3</td>
<td>3.18</td>
<td>1110</td>
</tr>
<tr>
<td>1542</td>
<td>2.5ε</td>
<td>1.7</td>
<td>10.0</td>
<td>8.9</td>
<td>85.0</td>
<td>55.0</td>
<td>42.3</td>
<td>3.28</td>
<td>628</td>
</tr>
<tr>
<td>1644</td>
<td>2.626</td>
<td>3.3</td>
<td>6.0</td>
<td>4.1</td>
<td>300.0</td>
<td>300.0</td>
<td>473.3</td>
<td>3.29</td>
<td>236</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>8.4</td>
<td>0.27</td>
<td>2413</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bit Lime</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2490</td>
<td>2.6</td>
<td>4.3</td>
<td>4.0</td>
<td>4.4</td>
<td>125.0</td>
<td>125.0</td>
<td>422.0</td>
<td>3.43</td>
<td>244</td>
</tr>
<tr>
<td>2500</td>
<td>2.5</td>
<td>1.7</td>
<td>10.0</td>
<td>10.4</td>
<td>125.0</td>
<td>125.0</td>
<td>75.5</td>
<td>3.18</td>
<td>830</td>
</tr>
<tr>
<td>2502</td>
<td>2.6</td>
<td>4.3</td>
<td>6.0</td>
<td>5.4</td>
<td>100.0</td>
<td>100.0</td>
<td>279.7</td>
<td>3.39</td>
<td>321</td>
</tr>
<tr>
<td>2504</td>
<td>2.69</td>
<td>1.3</td>
<td>4.0</td>
<td>2.9</td>
<td>125.0</td>
<td>175.0</td>
<td>367.9</td>
<td>1.85</td>
<td>90</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>5.8</td>
<td>0.41</td>
<td>1321</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Berea</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3346</td>
<td>2.5</td>
<td>1.7</td>
<td>10.0</td>
<td>10.4</td>
<td>70.0</td>
<td>70.0</td>
<td>75.5</td>
<td>3.24</td>
<td>768</td>
</tr>
<tr>
<td>3348</td>
<td>2.4ε</td>
<td>1.9</td>
<td>11.0</td>
<td>1.5</td>
<td>60.0</td>
<td>60.0</td>
<td>61.8</td>
<td>3.24</td>
<td>850</td>
</tr>
<tr>
<td>3350</td>
<td>2.4ε</td>
<td>3.2</td>
<td>12.0</td>
<td>12.1</td>
<td>50.0</td>
<td>50.0</td>
<td>55.3</td>
<td>3.25</td>
<td>894</td>
</tr>
<tr>
<td>3352</td>
<td>2.4ε</td>
<td>3.1</td>
<td>13.0</td>
<td>13.0</td>
<td>46.0</td>
<td>46.0</td>
<td>47.6</td>
<td>3.24</td>
<td>974</td>
</tr>
<tr>
<td>3354</td>
<td>2.4ε</td>
<td>3.1</td>
<td>13.0</td>
<td>13.0</td>
<td>46.0</td>
<td>46.0</td>
<td>46.0</td>
<td>3.24</td>
<td>974</td>
</tr>
<tr>
<td>3356</td>
<td>2.4ε</td>
<td>3.1</td>
<td>17.0</td>
<td>17.0</td>
<td>70.0</td>
<td>70.0</td>
<td>34.4</td>
<td>1.16</td>
<td>1937</td>
</tr>
<tr>
<td>3358</td>
<td>2.3ε</td>
<td>7.9</td>
<td>16.0</td>
<td>16.9</td>
<td>50.0</td>
<td>50.0</td>
<td>28.3</td>
<td>3.18</td>
<td>1367</td>
</tr>
<tr>
<td>3360</td>
<td>2.4ε</td>
<td>3.7</td>
<td>13.0</td>
<td>13.3</td>
<td>50.0</td>
<td>50.0</td>
<td>45.5</td>
<td>3.22</td>
<td>1016</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>13.7</td>
<td>0.27</td>
<td>0.0386</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Pay Zone</td>
<td>10.1</td>
<td>0.28</td>
<td>12,083</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- $p_b =$ from RHOB log
- $\phi_{31} = (p_{31}-p_b)(p_{31}-p_e)$
- ϕ_{D2} = from DH/II log
- $\phi = (\phi_{D1}+\phi_{D2})/2$
- $R_{II} =$ from II D log
- $F_R = \frac{R_e}{R_s}$
- $R_e = R_{II}$
- $F_e = 0.844^2$
- $S_w = (F_e^2 R_e^2 R_s)^{0.5}$

- $p_{pc} = \frac{p_{pc}}{R_e}$
- $T_{pc} = \frac{T_{pc}}{R_e} R_e$
- $P_{pc} = P_{res} p_{pc}$
- $T_{pc} = T_{res} R_e$
- $z = \text{from z-factor chart}$
- $B_g = 0.0283 z T_{res} P_{res}$

$\rho_a = 8.33 \text{ ppg}$
$\rho_r = 1$
$\rho_{res} = 2.66 \text{ g/cc}$
$A = 1 \text{ acre}$
$R_e = 0.065 \Omega \text{ m}$
$P_{res} = 1400 \text{ psi}$
$T_{res} = 76 \text{ deg F}$
$T_{pc} = 6.0$

TABLE 4: INVESTMENT DETERMINATION

<table>
<thead>
<tr>
<th>Investment</th>
<th>Cost</th>
<th>Days</th>
<th>$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supervision</td>
<td>450</td>
<td>8.54</td>
<td>3,844.76</td>
</tr>
<tr>
<td>Rig Rate</td>
<td>1,000</td>
<td>8.54</td>
<td>8,543.91</td>
</tr>
<tr>
<td>Misc. Tools</td>
<td>500</td>
<td></td>
<td>500.00</td>
</tr>
<tr>
<td>Perf Charges</td>
<td>500</td>
<td></td>
<td>500.00</td>
</tr>
<tr>
<td>Other Perf Charges</td>
<td>200</td>
<td></td>
<td>200.00</td>
</tr>
<tr>
<td>Drilling Fluids</td>
<td>1,000</td>
<td></td>
<td>1,000.00</td>
</tr>
<tr>
<td>Contract Drilling</td>
<td>1,200</td>
<td>6.38</td>
<td>7,650.30</td>
</tr>
<tr>
<td>Well Supplies</td>
<td>3,500</td>
<td></td>
<td>3,500.00</td>
</tr>
<tr>
<td>Transportation</td>
<td>1,500</td>
<td></td>
<td>1,500.00</td>
</tr>
<tr>
<td>Drillstring</td>
<td>4,000</td>
<td></td>
<td>4,000.00</td>
</tr>
<tr>
<td>Other Rentals</td>
<td>8,500</td>
<td></td>
<td>8,500.00</td>
</tr>
<tr>
<td>Other Subsurface</td>
<td>3,000</td>
<td></td>
<td>3,000.00</td>
</tr>
<tr>
<td>Casing, Tubing, Rods</td>
<td>9,500</td>
<td></td>
<td>9,500.00</td>
</tr>
<tr>
<td>Logging</td>
<td>25,000</td>
<td></td>
<td>25,000.00</td>
</tr>
<tr>
<td>Facilities</td>
<td>10,000</td>
<td></td>
<td>10,000.00</td>
</tr>
</tbody>
</table>

(Realized - Cost per day) TOTAL 87,238.97

Facilities	$10,000
VWO Tan	$9,500
VWO Int	$67,739
Subtotal	**$87,239**
G&A Facilities	$1,300
G&A Wells	$1,235
TOTAL	**$89,774**
TABLE 5: PSEUDO-PRESSURE AND PSEUDO-TIME

<table>
<thead>
<tr>
<th>Time</th>
<th>(tₚ⁺Δt)/Δt</th>
<th>Pressure</th>
<th>Z</th>
<th>m(P)</th>
<th>tₚ</th>
<th>Δm(P)</th>
</tr>
</thead>
<tbody>
<tr>
<td>hours</td>
<td></td>
<td>psi</td>
<td>-</td>
<td>psf²/cp</td>
<td></td>
<td>psf²/cp</td>
</tr>
<tr>
<td>0.00</td>
<td>0.00</td>
<td>707</td>
<td>0.9470</td>
<td>3.842E+07</td>
<td>0.000E+00</td>
<td>0.000E+00</td>
</tr>
<tr>
<td>0.07</td>
<td>17.143.86</td>
<td>720</td>
<td>0.9461</td>
<td>3.984E+07</td>
<td>3.447E+03</td>
<td>1.420E+06</td>
</tr>
<tr>
<td>0.29</td>
<td>4136.93</td>
<td>759</td>
<td>0.9436</td>
<td>4.425E+07</td>
<td>1.463E+04</td>
<td>5.832E+06</td>
</tr>
<tr>
<td>0.94</td>
<td>1277.60</td>
<td>872</td>
<td>0.9364</td>
<td>5.831E+07</td>
<td>5.067E+04</td>
<td>1.989E+07</td>
</tr>
<tr>
<td>2.23</td>
<td>539.12</td>
<td>1088</td>
<td>0.9241</td>
<td>9.035E+07</td>
<td>1.346E+05</td>
<td>5.193E+07</td>
</tr>
<tr>
<td>3.68</td>
<td>336.70</td>
<td>1304</td>
<td>0.9134</td>
<td>1.289E+08</td>
<td>2.386E+05</td>
<td>9.051E+07</td>
</tr>
<tr>
<td>4.97</td>
<td>242.45</td>
<td>1521</td>
<td>0.9046</td>
<td>1.739E+08</td>
<td>3.618E+05</td>
<td>1.355E+08</td>
</tr>
<tr>
<td>6.41</td>
<td>188.21</td>
<td>1739</td>
<td>0.8979</td>
<td>2.250E+08</td>
<td>5.057E+05</td>
<td>1.866E+08</td>
</tr>
<tr>
<td>7.92</td>
<td>152.52</td>
<td>1957</td>
<td>0.8931</td>
<td>2.814E+08</td>
<td>6.734E+05</td>
<td>2.430E+08</td>
</tr>
<tr>
<td>9.46</td>
<td>127.85</td>
<td>2176</td>
<td>0.8806</td>
<td>3.431E+08</td>
<td>8.617E+05</td>
<td>3.047E+08</td>
</tr>
<tr>
<td>11.00</td>
<td>110.09</td>
<td>2395</td>
<td>0.8602</td>
<td>4.091E+08</td>
<td>1.067E+06</td>
<td>3.707E+08</td>
</tr>
<tr>
<td>16.10</td>
<td>75.53</td>
<td>3054</td>
<td>0.9008</td>
<td>6.293E+08</td>
<td>1.871E+06</td>
<td>5.909E+08</td>
</tr>
<tr>
<td>25.40</td>
<td>48.24</td>
<td>4136</td>
<td>0.9480</td>
<td>1.036E+09</td>
<td>3.827E+06</td>
<td>9.973E+08</td>
</tr>
<tr>
<td>29.90</td>
<td>41.33</td>
<td>4536</td>
<td>0.9732</td>
<td>1.202E+09</td>
<td>4.998E+06</td>
<td>1.183E+09</td>
</tr>
<tr>
<td>35.00</td>
<td>35.29</td>
<td>4961</td>
<td>0.9999</td>
<td>1.364E+09</td>
<td>6.476E+06</td>
<td>1.325E+09</td>
</tr>
<tr>
<td>45.60</td>
<td>27.32</td>
<td>5539</td>
<td>1.0412</td>
<td>1.597E+09</td>
<td>9.934E+06</td>
<td>1.559E+09</td>
</tr>
<tr>
<td>50.60</td>
<td>24.72</td>
<td>5702</td>
<td>1.0534</td>
<td>1.663E+09</td>
<td>1.171E+07</td>
<td>1.625E+09</td>
</tr>
<tr>
<td>66.60</td>
<td>19.02</td>
<td>6001</td>
<td>1.0763</td>
<td>1.784E+09</td>
<td>1.766E+07</td>
<td>1.746E+09</td>
</tr>
<tr>
<td>81.60</td>
<td>15.71</td>
<td>6118</td>
<td>1.0854</td>
<td>1.831E+09</td>
<td>2.349E+07</td>
<td>1.793E+09</td>
</tr>
<tr>
<td>110.00</td>
<td>11.91</td>
<td>6210</td>
<td>1.0927</td>
<td>1.869E+09</td>
<td>3.475E+07</td>
<td>1.830E+09</td>
</tr>
<tr>
<td>181.00</td>
<td>7.63</td>
<td>6283</td>
<td>1.0884</td>
<td>1.898E+09</td>
<td>6.336E+07</td>
<td>1.860E+09</td>
</tr>
<tr>
<td>301.00</td>
<td>4.99</td>
<td>6334</td>
<td>1.1025</td>
<td>1.919E+09</td>
<td>1.123E+08</td>
<td>1.880E+09</td>
</tr>
<tr>
<td>421.00</td>
<td>3.85</td>
<td>6363</td>
<td>1.1048</td>
<td>1.930E+09</td>
<td>1.616E+08</td>
<td>1.692E+09</td>
</tr>
<tr>
<td>541.00</td>
<td>3.22</td>
<td>6383</td>
<td>1.1064</td>
<td>1.938E+09</td>
<td>2.112E+08</td>
<td>1.900E+09</td>
</tr>
<tr>
<td>661.00</td>
<td>2.82</td>
<td>6397</td>
<td>1.1075</td>
<td>1.944E+09</td>
<td>2.609E+08</td>
<td>1.906E+09</td>
</tr>
<tr>
<td>781.00</td>
<td>2.54</td>
<td>6408</td>
<td>1.1084</td>
<td>1.949E+09</td>
<td>3.107E+08</td>
<td>1.910E+09</td>
</tr>
<tr>
<td>901.00</td>
<td>2.33</td>
<td>6417</td>
<td>1.1091</td>
<td>1.952E+09</td>
<td>3.607E+08</td>
<td>1.914E+09</td>
</tr>
<tr>
<td>1021.00</td>
<td>2.18</td>
<td>6424</td>
<td>1.1096</td>
<td>1.955E+09</td>
<td>4.107E+08</td>
<td>1.917E+09</td>
</tr>
<tr>
<td>1141.00</td>
<td>2.05</td>
<td>6429</td>
<td>1.1100</td>
<td>1.957E+09</td>
<td>4.607E+08</td>
<td>1.919E+09</td>
</tr>
<tr>
<td>1200.00</td>
<td>2.00</td>
<td>6432</td>
<td>1.1103</td>
<td>1.958E+09</td>
<td>4.854E+08</td>
<td>1.920E+09</td>
</tr>
</tbody>
</table>
TABLE 6: Economic Analysis

<table>
<thead>
<tr>
<th>Time, months</th>
<th>Production per Week, $</th>
<th>Investment, %</th>
<th>Operating Cost, %</th>
<th>Revenue, %</th>
<th>Net Cash Flow, %</th>
<th>CSV 1%, %</th>
<th>CSV 5%, %</th>
<th>CSV 10%, %</th>
<th>CSV 15%, %</th>
<th>CSV 20%, %</th>
<th>CSV 25%, %</th>
<th>CSV 30%, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>10,373</td>
<td>6</td>
<td>28,713</td>
<td>6</td>
<td>28,713</td>
<td>6</td>
<td>28,713</td>
<td>6</td>
<td>28,713</td>
<td>6</td>
<td>28,713</td>
<td>6</td>
</tr>
<tr>
<td>1</td>
<td>11,131</td>
<td>7</td>
<td>32,317</td>
<td>7</td>
<td>32,317</td>
<td>7</td>
<td>32,317</td>
<td>7</td>
<td>32,317</td>
<td>7</td>
<td>32,317</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>11,808</td>
<td>8</td>
<td>35,972</td>
<td>8</td>
<td>35,972</td>
<td>8</td>
<td>35,972</td>
<td>8</td>
<td>35,972</td>
<td>8</td>
<td>35,972</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>12,497</td>
<td>9</td>
<td>39,654</td>
<td>9</td>
<td>39,654</td>
<td>9</td>
<td>39,654</td>
<td>9</td>
<td>39,654</td>
<td>9</td>
<td>39,654</td>
<td>9</td>
</tr>
<tr>
<td>4</td>
<td>13,121</td>
<td>10</td>
<td>43,323</td>
<td>10</td>
<td>43,323</td>
<td>10</td>
<td>43,323</td>
<td>10</td>
<td>43,323</td>
<td>10</td>
<td>43,323</td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td>13,777</td>
<td>11</td>
<td>46,993</td>
<td>11</td>
<td>46,993</td>
<td>11</td>
<td>46,993</td>
<td>11</td>
<td>46,993</td>
<td>11</td>
<td>46,993</td>
<td>11</td>
</tr>
<tr>
<td>6</td>
<td>14,455</td>
<td>12</td>
<td>50,675</td>
<td>12</td>
<td>50,675</td>
<td>12</td>
<td>50,675</td>
<td>12</td>
<td>50,675</td>
<td>12</td>
<td>50,675</td>
<td>12</td>
</tr>
<tr>
<td>7</td>
<td>15,157</td>
<td>13</td>
<td>54,374</td>
<td>13</td>
<td>54,374</td>
<td>13</td>
<td>54,374</td>
<td>13</td>
<td>54,374</td>
<td>13</td>
<td>54,374</td>
<td>13</td>
</tr>
<tr>
<td>8</td>
<td>15,883</td>
<td>14</td>
<td>58,098</td>
<td>14</td>
<td>58,098</td>
<td>14</td>
<td>58,098</td>
<td>14</td>
<td>58,098</td>
<td>14</td>
<td>58,098</td>
<td>14</td>
</tr>
<tr>
<td>9</td>
<td>16,632</td>
<td>15</td>
<td>61,844</td>
<td>15</td>
<td>61,844</td>
<td>15</td>
<td>61,844</td>
<td>15</td>
<td>61,844</td>
<td>15</td>
<td>61,844</td>
<td>15</td>
</tr>
<tr>
<td>10</td>
<td>17,405</td>
<td>16</td>
<td>65,621</td>
<td>16</td>
<td>65,621</td>
<td>16</td>
<td>65,621</td>
<td>16</td>
<td>65,621</td>
<td>16</td>
<td>65,621</td>
<td>16</td>
</tr>
<tr>
<td>11</td>
<td>18,199</td>
<td>17</td>
<td>69,437</td>
<td>17</td>
<td>69,437</td>
<td>17</td>
<td>69,437</td>
<td>17</td>
<td>69,437</td>
<td>17</td>
<td>69,437</td>
<td>17</td>
</tr>
<tr>
<td>12</td>
<td>18,917</td>
<td>18</td>
<td>73,292</td>
<td>18</td>
<td>73,292</td>
<td>18</td>
<td>73,292</td>
<td>18</td>
<td>73,292</td>
<td>18</td>
<td>73,292</td>
<td>18</td>
</tr>
</tbody>
</table>

Note: The table shows the projected economic analysis for 12 months, including production, investment, operating cost, revenue, net cash flow, and various CSV percentages. The values are calculated based on the given data.
LOG 1: INDUCTION LOG
LOG 2: BULK DENSITY & DENSITY POROSITY LOG
PROGRAM 1: PSEUDO-PRESSURE AND PSEUDO-TIME

VISUAL BASIC COMPUTER PROGRAM

The computer program has one form, which includes the main body of the project. The form has a menu bar with the following options:
File (with submenus Open and Exit)
Import (with submenu Start Import)
The Open submenu allows the user to open the file that contains the values for time and pressure from the well test. It can be any type of text or Excel file. The Start Import submenu imports the data from the file opened previously. The Exit submenu exits the program. The form presents a table where the imported values for the time and pressure and the calculated values for pseudo-time and pseudo-pressure are displayed. Also, the same values are written to an output file in order to plot the needed graphs in Excel. After determining the slope and reading the \(m(P^*) \) and \(m(P_{1hr}) \), the values for \(z, c_g, \) and \(\mu \) at \(m(P^*) \) are calculated by the program.

VISUAL BASIC PROGRAM CODE

The following is the code for Module 1:

Option Explicit
Public i, j, counterf As Integer
Public tz, pz, gama, mwa, ror, q, h, prod, rw, por
Public p(100), t(100), ppc, tpc, ppr, tpr, cgg
Public miu(7000), zi(7000), ppr(7000), cg(7000)
Public pp(7000), mp(7000), mp(7000), mp(7000), ipp(7000)
Public ip(7000), tp(7000), zii(50)
Public miug, z
Public Function ef(ByVal ror As Double) ' Code for calculation the deviation factor
Const a1 = 0.3265
Const a2 = -1.07
Const a3 = -0.5339
Const a4 = 0.01569
Const a5 = -0.05165
Const a6 = 0.5475
Const a7 = -0.7361
Const a8 = 0.1844
Const a9 = 0.1056
Const a10 = 0.6134
Const a11 = 0.721
Dim m1, m2, m3, m4 As Double
m1 = a1 + a2 / tpr + a3 / (tpr ^ 3) + a4 / (tpr ^ 4) + a5 / (tpr ^ 5)
m2 = a6 + a7 / tpr + a8 / tpr / tpr
m3 = a9 * (a7 / tpr + a8 / tpr / tpr)
m4 = a9 * Exp(-a11 * (ror ^ 2)) + 1 - 0.27 * ppr / tpr / ror
ef = m1 * ror + m2 * (ror ^ 2) - m3 * (ror ^ 5)_ + m4 * Exp(-a11 * (ror ^ 2)) + 1 - 0.27 * ppr / tpr / ror
End Function
Public Sub dividemethod()
 / code for the Newton Raphson iteration method
 Dim n1, n2, nm As Double
 n1 = 0.00001
 n2 = 1.5
 nm = (n1 + n2) / 2
 Do
 If (ef(n1) * ef(nm)) < 0 Then
 n1 = n1
 nm = (n1 + n2) / 2
 Else
 n1 = nm
 n2 = n2
 nm = (n1 + n2) / 2
 End If
 Loop Until Abs(ef(n1)) < 0.0001
 ror = n1
 z = 0.27 * ppr / tpr / ror
 End Sub

Public Sub deanstiel()
 / code for calculating the Viscosity using Dean-Stiel Method
 Const b1 = 0.00034
 Const b2 = 0.001668
 Const b3 = 0.000108
 Dim a12, miu1, xiem, tpcra As Double
 tpcra = 1.8 * (tpc - 273.15) + 492
 xiem = 5.4402 * (tpc ^ (1/6)) / (mwa ^ 0.5) / ((ppc) ^ (2/3))
 If tpr <= 1.5 Then
 miu1 = b1 * ((tpr) ^ (8/9)) / xiem
 Else
 a12 = (0.1333 * tpr - 0.0932) ^ (5/9)
 miu1 = b2 * a12 / xiem
 End If
 miug = miu1 + b3 * (Exp(1.439 * ror) - Exp(-1.111 * (ror ^ 1.888))) / xiem
 End Sub

Public Sub fcg()
 / function code for calculating the gas compressibility
 Const a1 = 0.3265
 Const a2 = -1.07
 Const a3 = -0.5339
 Const a4 = 0.01569
 Const a5 = -0.05165
 Const a6 = 0.5475
Const a7 = -0.7361
Const a8 = 0.1844
Const a9 = 0.1056
Const a10 = 0.6134
Const a11 = 0.721

Dim m11, m21, m31, m41, dzdror As Double

m11 = a1 + a2 / tpr + a3 / (tpr ^ 3) + a4 / (tpr ^ 4) + a5 / (tpr ^ 5)
m21 = a6 + a7 / tpr + a8 / tpr / tpr
m41 = a10 * 2 * ror * (1 + a11 * (ror ^ 2) - (a11 ^ 2) * (ror ^ 4)) / (tpr ^ 3)
dzdror = m11 + 2 * m21 * ror - 5 * m31 * (ror ^ 4) + m41 * Exp(-a11 * (ror ^ 2))
cgg = (1 / ppr - 0.27 / (z ^ 2) / tpr * (dzdror / (1 + dzdror * ror / z))) / ppc

End Sub

MAIN BODY OF THE PROGRAM

Private Sub Command1_Click()
 / code for the command CALCULATE button

 gama = Val(txtgama.Text)
 por = Val(txtpor.Text)
 tz = Val(txttz.Text)
 prodt = Val(txtprodt.Text)
 h = Val(txth.Text)
 rw = Val(txtrw.Text)
 q = Val(txtq.Text)
 prodt = Val(txtprodt.Text)

 mwa = gama * 28.96
 ppc = 709.605 - 58.718 * gama
 tpc = 170.491 + 307.344 * gama
 tpr = (tz + 460) / tpc

 pp(0) = 0
 For i = 1 To 7000 Step 1
 SSPanel1.FloodPercent = (i / 7000) * 100
 pp(i) = pp(i - 1) + 1
 ppr = pp(i) / ppc
 dividemethod
 fcg
 cg(i) = cgg
 zi(i) = z
 miu(i) = miug
 mp2(i) = 2 * pp(i) / miu(i) / zi(i)
 If i = 1 Then
 mpp(i) = mp2(i) / 2
 ipp(i) = miu(i) * cg(i) / 2
 Next i

End Sub
Else
mp(i) = mpp(i - 1) + (mp2(i) + mp2(i - 1)) / 2
ipp(i) = ipp(i - 1) + (1 / miu(i) / cg(i) + 1 / miu(i - 1) / cg(i - 1)) / 2
End If

Next

For j = 1 To counterf Step 1
For i = 1 To 7000 Step 1
If pp(i) = p(j) Then
ip(j) = ipp(i)
zii(j) = zi(i)
End If
If i = 1 Then
tp(j) = 0
Else
tp(j) = tp(j - 1) + (t(j) - t(j - 1)) / (p(j) - p(j - 1)) * (ip(j) - ip(j - 1))
End If
Next
Next

grddata.Col = 3
For j = 1 To counterf Step 1
grddata.Row = j
grddata.Text = Format(mp(j), "#####.#")
Next
grddata.Col = 4
For j = 1 To counterf Step 1
grddata.Row = j
grddata.Text = Format(tp(j), "######.#")
Next

Open "A:\res391.txt" For Output As #2
Print #2, "pressure Z - factor Pseodopress ip Pseudotime"
For j = 1 To counterf Step 1
Print #2, p(j), "", zii(j), "", mp(j), "", ip(j), "", tp(j)
'Print #2, zi(3150), "", miu(3150), "", cg(3150)
Close #2

End Sub

Private Sub Form_Load() / code for setting the dimensions of the table
For i = 0 To 69 Step 1
grddata.Row = i
grddata.ColWidth(0) = 250
grddata.ColWidth(2) = 600
grddata.ColWidth(3) = 800
grddata.ColWidth(4) = 820
Next

grddata.Col = 0
grddata.Row = 0
grddata.Text = "No."
For i = 1 To 68 Step 1
grddata.Row = i
grddata.Text = Format(i, "##")
Next

End Sub

Private Sub mnuexit_Click() / code for the Exit submenu

End
End Sub

Private Sub mnuopen_Click() / code for the Open submenu - open the input file

Dim filter As String

filter = "All Files (*.*)|*. |
filter = filter + "Text Files (*.txt)|*.txt|
filter = filter + "Excel Files (*.xls|*.xls|
CommonDialog1.FilterIndex = 2
CommonDialog1.Action = 1

End Sub

Private Sub mnustimport_Click() / code for the Import submenu - importing the data from input file

Open CommonDialog1.filename For Input As 1
Counter = 1
i = 1
Do While Not EOF(1)
Input #1, t(i), p(i)
i = i + 1
Counter = Counter + 1
Loop
counterf = Counter - 1
Close #1

grrdata.Col = 1
For i = 1 To counterf Step 1
grrdata.Row = i
grrdata.Text = Format(t(i), "##0.##")
Next

grrdata.Col = 2
For i = 1 To counterf Step 1
grrdata.Text = Format(p(i), "####")
Next

Command1.Enabled = True

End Sub
PROGRAM 2: GAS PERFORMANCE PREDICTION

Option Explicit

Private c1(12) As Double
Private agas_pvt As PVT
Private azfact As Double, abg As Double
Private flag_gas_option As Boolean
Private graph(3000, 2) As Double

Private Sub cmdcalculate_Click()
 Dim atemp As Double, apress As Double, step_press As Double
 Dim acg_gas As Double, avisc As Double, a_mpp As Double
 Dim i1 As Double, mp2() As Double
 calculate_gas_pvt
 atemp = Val(txtatemperature.Text)
 step_press = Val(txtsteppressure.Text)
 With mgsfgridgaspvt
 ReDim mp2(.Rows) As Double
 i1 = 1
 apress = Val(txtfinalpressure.Text)
 prgbarg.Min = 1
 prgbarg.max = .Rows
 Do
 azfact = agas_pvt.Z_Factor(atemp, apress, agas_pvt.Pseudo_Critical_Temp _,
 acg_gas = agas_pvt.Gas_Compressibility_Cg(agas_pvt.Pseudo_Reduced_Temp _,
 avisc = agas_pvt.Gas_Viscosity(azfact)
 .TextMatrix(i1, 0) = Format(i1, "#")
 .TextMatrix(i1, 1) = Format(apress, "#####.#0")
 .TextMatrix(i1, 2) = Format(azfact, "0.####")
 .TextMatrix(i1, 3) = Format(abg, "0.#####")
 .TextMatrix(i1, 4) = Format(avisc, "0.#####")
 .TextMatrix(i1, 5) = Format(acg_gas, "0.#####")
 mp2(i1) = 2 * apress / avisc / azfact
 If i1 = 1 Then
 a_mpp = mp2(i1) / 2
 Else
 a_mpp = .TextMatrix(i1 - 1, 6) + (mp2(i1) + mp2(i1 - 1)) / 2
 End If
 .TextMatrix(i1, 6) = Format(a_mpp, "#0.##")
 apress = apress + step_press
 If apress <= 0 Then Exit Do
 i1 = i1 + 1
 prgbarg.Value = i1
 Loop Until (apress > Val(txtinitialpressure.Text))
End With

Set agas_pvt = Nothing
Erase mp2()

End Sub

Private Sub Cmdcomposition_Click()
Dim apress As Double, atemp As Double

calculate_gas_pvt
apress = Val(txtapressure.Text)

abg = agas_pvt.Gas_Volume_Factor(atemp, apress, azfact)

txttcp.Text = Format(agas_pvt.Pseudo_Critical_Temp, "#0.####")
txtppc.Text = Format(agas_pvt.Pseudo_Critical_Press, "#0.####")
txtpr.Text = Format(agas_pvt.Pseudo_Reduced_Temp, "#0.####")
txtppr.Text = Format(agas_pvt.Pseudo_Reduced_Press, "#0.####")
txtzfactor.Text = Format(azfact, " #0.####")
txtbg.Text = Format(abg, " #.###e-#")
txtgasgravity.Text = Format(agas_pvt.gas_gravity, "#0.###")
Set agas_pvt = Nothing

End Sub

Private Sub calculate_gas_pvt()
Dim sum_c1 As Double, i1 As Integer, res

Set agas_pvt = New PVT

If optcomposition.Value = True Then
sum_c1 = 0
For i1 = 1 To 12 Step 1
sum_c1 = sum_c1 + c1(i1)
agas_pvt.Get_Gas_Component c1(i1), i1
Next
If (sum_c1 < 100) Or (sum_c1 > 100.001) Then
MsgBox "Your composition is not corect!", vbCritical, "Gas Composition System"
STab1.Tab = 0
End If
Txtcomposition.Text = Format(sum_c1, "#.00##")
agas_pvt.Pseudo_Critical_Parameters_Composition
Else
If txtgasgravity.Text = "" Then
res = MsgBox(" You have to enter Gas Gravity !", vbCritical, "Gas Composition System")
Txtcomposition.Text = Format(100, "#.00##")
Exit Sub
Else: agas_pvt.gas_gravity = Val(txtgasgravity.Text)
End If
If optnaturalgas.Value = True Then
 agas_pvt.Pseudo_Critical_Param_Correl_Natural_Gas = agas_pvt.gas_gravity
Else
 agas_pvt.Pseudo_Critical_Param_Correl_Gas_Condensate = agas_pvt.gas_gravity
End If

End Sub

Private Sub cmdbacke_Click()
End Sub
Private Sub Cmdcontinuee_Click()
 GasComposition.Hide
 calculate_gas_pvt
 GasDryReservoir.Show
End Sub

Private Sub Form_Load()
Dim intloopindex As Integer, k_col As Integer
Flag_gas_composition = True
With msfgridgaspt
 For intloopindex = .FixedRows To .Rows - 1
 .TextArray(.Cols * intloopindex) = Format(intloopindex, " #")
 Next
 .RowHeight(0) = 650
 .WordWrap = True
 .Row = 0
 For k_col = 0 To 5 Step 1
 .ColAlignment(k_col) = 3
 .ColWidth(k_col) = 1100
 Next
 .ColAlignment(6) = 3
 .ColWidth(5) = 1560: .ColWidth(6) = 1500
End With
End Sub

Private Sub SSTab1_Click(PreviousTab As Integer)
Private Gi As Double, Qi As Double, Fndi As Double, Xi As Double
Private A As Double, B As Double, No_Wells As Double
Private Pipe_lenght As Double, Pipe_diam As Double, Pipe_press As Double
Private Depth As Double, Tubing_diam As Double
Private Res_Press As Double, pwf As Double, Surf_Press As Double
Private Res_Temp As Double, Surf_Temp As Double
Private zi() As Double, mpp() As Double
Private Qg(100) As Double, Qgaverage(100) As Double, Qgdaily(100) As Double
Private Actual_press(100) As Double, Recovery_fact(100) As Double
Private Cum_Gp(100) As Double, Delta_Gp(100) As Double
Private Time As Integer, Cum_Time(100) As Double
Private P_tubing(100) As Double, Pipe_line(100)
Private Pizi As Double, Ppz As Double
Private mp_actual(100) As Double, mp_Time_t(100) As Double
Private gas_param As PVT

Private Sub cmdRun_dpconstant_Click()
 Dim max As Integer, i As Integer, i1 As Integer
 Dim Delta_press_bottom_hole As Double
 Dim ppza As Double
 Dim Temp_tg As Double, Temp_average_surface As Double, res
 Dim mp_pwf(100) As Double, actual_pwf(100) As Double
 Res_Temp = Val(MainGas.txtrestemp.Text)
 Surf_Temp = Val(MainGas.txtsurfacetemp.Text)
 Res_Press = Val(MainGas.txtgasrespressure.Text)
 Depth = Val(MainGas.txttubinglenght.Text)
 Tubing_diam = Val(MainGas.txttubingdiameter.Text)
 Pipe_diam = Val(MainGas.txtpipediameter.Text)
 Pipe_lenght = Val(MainGas.txtpipelenght.Text)
 Pipe_press = Val(MainGas.txtpipepressure.Text)
 Gi = Val(MainGas.txtGi.Text)
 Qi = Val(MainGas.txtQi.Text)
 Delta_Gp(0) = Val(MainGas.txtgasproduced.Text)
 No_Wells = Val(MainGas.txtnowells.Text)
 If A = 0 Or B = 0 Then
 res = MsgBox("Deliverability Ecuation Coefficients has not been entered !", vbCritical, " Main Gas ")
 Exit Sub
 End If
 Set gas_param = New PVT
 gas_param.Pseudo_Critical_Temp = gas_Pseudo_Critical_Temp
 gas_param.gas_gravity = gas_gas_gravity
 gas_param.mwa = gas_Mwa
gas_param.Pseudo_Critical_Temp,
mp_Time_t(1) = mpp(Res_Press)
Actual_press(0) = Res_Press
If Val(MainGas.txtgasproduced.Text) > 1 Then
 i = 0
 Recovery_fact(i) = Delta_Gp(i) / Gi
 Ppz = Pizi * (1 - Recovery_fact(i))
 Actual_press(i) = Res_Press
 Do
 Actual_press(i) = Actual_press(i) - 8
 ppza = Actual_press(i) / gas_param.Z_Factor(Res_Temp, Actual_press(i),
gas_param.Pseudo_Critical_Temp,
 Loop Until Abs(Ppz - ppza) < 10
 End Do
 mp_Time_t(1) = mpp(Int(Actual_press(i)))
End If

Cum_Time(0) = 0: Time = 1
i = 1
Qgdaily(1) = Val(txtaa.Text)
Do
 prgbarrun.Value = i
 Qg(i) = Qgdaily(1) * 30.4
 Delta_press_bottom_hole = A * Qg(i) / 30.4 + B * (Qg(i) / 30.4) ^ 2
 mp_pwf(i) = mp_Time_t(i) - Delta_press_bottom_hole
 If mp_pwf(i) < 0 Then
 res = MsgBox("The deliverability coefficients must be changed", vbCritical, "Program")
 Exit Do
 End If
 Qgaverage(i) = Qg(i)
 Qgdaily(i) = Qgaverage(i) / 30.4
 Delta_Gp(i) = Delta_Gp(i - 1) + Qg(i) * Time
 Ppz = Pizi * (1 - Recovery_fact(i))
 Actual_press(i) = Actual_press(i - 1)
 Do
 Actual_press(i) = Actual_press(i) - 2
 ppza = Actual_press(i) / gas_param.Z_Factor(Res_Temp, Actual_press(i),
gas_param.Pseudo_Critical_Temp,
 Loop Until Abs(Ppz - ppza) < 3
 End Do
For i1 = 1 To Res_Press Step 1
 If i1 = Int(Actual_press(i)) Then mp_actual(i) = mpp(i1)
 If (mpp(i1) < mp_pwf(i)) And (mp_pwf(i) < mpp(i1 + 1)) Then actual_pwf(i) = i1
Next
Cum_Time(i) = Cum_Time(i - 1) + Time
If actual_pwf(i) < 100 Then Exit Do
i = i + 1
If i > 100 Then Exit Do
 mp_Time_t(i) = mp_actual(i - 1)
prgbarrun.Value = 100
max = i - 1
Temp_tg = (Res_Temp + Surf_Temp) / 2
Temp_average_surface = (520 + Surf_Temp + 460) / 2

For i = 1 To max Step 1
 prgbarrun.Value = i
 P_tubing(i) = Flowing_Pressure_Wellhead(Temp_tg, actual_pwf(i), Qg(i) / 30.4)
Next
 prgbarrun.Value = 100

With msfgridgasres
 .Rows = 2
 .Rows = max + 2
 For i = 0 To 9 Step 1
 .ColAlignment(i) = 3
 Next
 For i = 1 To (max) Step 1
 .TextMatrix(i, 0) = Format(Cum_Time(i), " #:0"): .CellAlignment = 6
 .TextMatrix(i, 1) = Format(Qgdaily(i) * 1000, "#0.0"): .CellAlignment = 6
 .TextMatrix(i, 2) = Format(Qgaverage(i) * 1000, "#0.0"): .CellAlignment = 6
 .TextMatrix(i, 3) = Format(Delta_Gp(i), "#0.0"): .CellAlignment = 6
 .TextMatrix(i, 4) = Format(Actual_press(i - 1), "#0"): .CellAlignment = 6
 .TextMatrix(i, 5) = Format(actual_pwf(i), "#0"): .CellAlignment = 6
 .TextMatrix(i, 6) = Format(P_tubing(i), "#0"): .CellAlignment = 6
 .TextMatrix(i, 7) = Format(Recovery_fact(i) * 100, "#0.0"): .CellAlignment = 6
 .TextMatrix(i, 8) = Format(mp_Time_t(i - 1), "#0.0"): .CellAlignment = 6
 .TextMatrix(i, 9) = Format(mp_pwf(i), "#0.0"): .CellAlignment = 6
 Next
End With

Open "c:\pnge295gas.txt" For Output As #1
For i = 1 To max Step 1
 Print #1, Format(Cum_Time(i), " #:0"), Format(Qgdaily(i), "#0.###0"), Format(Qgaverage(i), "#0.###0"),
 Format(P_tubing(i), "#0.#0"), Format(Recovery_fact(i), "#0.#0"), Format(mp_Time_t(i - 1), "#0.#0"),
 Format(mp_pwf(i), "#0.#0")
Next
Close #1

End Sub

Private Function Flowing_Pressure_Wellhead(ByVal tm As Double, ByVal pwf As Double, ByVal Qd As Double) As Double
 Dim ptgf As Double, ptgd As Double, ptgc As Double, ptgc1 As Double
 Dim pm As Double, zm As Double, s As Double, s1 As Double, res
 ptgf = pwf
 Do
 pm = (ptgf + pwf) / 2
 zm = gas_param.Z_Factor(tm, pm, gas_param.Pseudo_Critical_Temp,
 s = 2 * gas_param.gas_gravity * Depth / (53.34 * (tm + 460) * zm)
 s1 = 25 * (tm + 460) * gas_param.gas_gravity * zm * 0.017 * Depth * (Exp(s) - 1)
 ptgc1 = ((pwf ^ 2) - (s1 * (Qd ^ 2) / s / (Tubing_diam ^ 5)))
 If ptgc1 < 0 Then
 res = MsgBox("Surface pressure smaller than zero ", vbCritical, "Program")
 Exit Do
 End If
 Loop
 Flowing_Pressure_Wellhead = ptgc1
End Function
ptgc = 0
Exit Function
End If
ptgc = (ptgc1 ^ 0.5) / Exp(s)
ptgd = ptgf: ptgf = ptgc
Loop Until Abs(ptgd - ptgc) < 1
Flowing_Pressure_Wellhead = ptgd

End Function

Private Function Surface_Line_Pressure(ByVal tms As Double, ByVal ptgl As Double, ByVal Qd As Double) As Double
Dim pplf As Double, pplfd As Double, pipepc As Double
Dim pm As Double, zm As Double, s2 As Double, s3 As Double
pplf = ptgl
Do
pm = (pplf + ptgl) / 2
s2 = (14.73 ^ 2) * gas_param.gas_gravity * (tms + 460) * Pipe_length
s3 = (433.49 ^ 2) * (520 ^ 2) * (Pipe_diam ^ (16 / 3))
pplfd = pplf
pplf = pipepc
Loop Until Abs(pplfd - pipepc) < 1
Surface_Line_Pressure = pipepc
End Function

Private Sub Form_Load()
Dim i1 As Integer
With msfgridgasres
.ColWidth(0) = 600: .ColWidth(1) = 900: .ColWidth(2) = 900
.ColWidth(6) = 800: .ColWidth(7) = 800: .ColWidth(8) = 1300
.ColWidth(9) = 1300
ReDim zi(GasComposition.msfgridgaspvt.Rows)
ReDim mpp(GasComposition.msfgridgaspvt.Rows)
For i1 = 1 To 49 Step 1
.TextMatrix(i1, 0) = Format(i1, "##")
Next
.Row = 0: .RowHeight(0) = 800
.WordWrap = True
.Col = 0: .CellAlignment = 5: .Text = "Time, months"
.Col = 1: .CellAlignment = 5: .Text = "Flow Rate, MCF/D"
.Col = 2: .CellAlignment = 5: .Text = "Gas Produced MCF per month"
End With
End Sub
Private Sub cmdback_Click()
 Me.Hide
End Sub

Private Sub cmdexit_Click()
 End
End Sub
GIANT PANDA APPENDIX

FIGURE 1: WELL LOCATION MAP

Kern County, California
FIGURE 2: USER INTERFACE FOR MAXIMUM SCHEDULE

<table>
<thead>
<tr>
<th>Reservoir Data</th>
<th>Production Constraints</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial Oil-in-Place, STB</td>
<td>Maximum Safe Drawdown, psi</td>
</tr>
<tr>
<td>Initial Pressure, psig</td>
<td>Allowable Rate, STB/day</td>
</tr>
<tr>
<td>Thickness of Oil Zones, ft</td>
<td>Minimum Flowing Pressure, psi</td>
</tr>
<tr>
<td>Average Porosity, %</td>
<td></td>
</tr>
<tr>
<td>Average Permeability, mD</td>
<td></td>
</tr>
<tr>
<td>Minimum Spacing, acres</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Reservoir Pressure, psi</th>
<th>Flowing Pressure, psi</th>
<th>GOR, SCF/STB</th>
<th>Oil Production (NpL), STB</th>
<th>Gas Production (Gp), SCF</th>
<th>Flow Rate (QL/STB/D)</th>
<th>Time, years</th>
</tr>
</thead>
<tbody>
<tr>
<td>1400</td>
<td>1200</td>
<td>445.0</td>
<td>0</td>
<td>0</td>
<td>245</td>
<td>0.0</td>
</tr>
<tr>
<td>1300</td>
<td>1100</td>
<td>420.0</td>
<td>98,827</td>
<td>43,175,080</td>
<td>244</td>
<td>0.3</td>
</tr>
<tr>
<td>1200</td>
<td>1000</td>
<td>677.0</td>
<td>180,319</td>
<td>76,355,311</td>
<td>214</td>
<td>0.5</td>
</tr>
<tr>
<td>1100</td>
<td>900</td>
<td>1319.0</td>
<td>206,180</td>
<td>122,124,158</td>
<td>180</td>
<td>0.7</td>
</tr>
<tr>
<td>1000</td>
<td>800</td>
<td>1781.0</td>
<td>240,040</td>
<td>174,607,585</td>
<td>152</td>
<td>1.0</td>
</tr>
<tr>
<td>900</td>
<td>700</td>
<td>2207.0</td>
<td>271,059</td>
<td>236,459,599</td>
<td>128</td>
<td>1.3</td>
</tr>
<tr>
<td>900</td>
<td>600</td>
<td>2631.0</td>
<td>300,016</td>
<td>300,440,206</td>
<td>109</td>
<td>1.8</td>
</tr>
<tr>
<td>700</td>
<td>500</td>
<td>2991.0</td>
<td>326,819</td>
<td>381,536,133</td>
<td>87</td>
<td>2.3</td>
</tr>
<tr>
<td>600</td>
<td>400</td>
<td>3193.0</td>
<td>354,542</td>
<td>467,115,035</td>
<td>68</td>
<td>3.1</td>
</tr>
<tr>
<td>500</td>
<td>300</td>
<td>4080.0</td>
<td>378,940</td>
<td>555,718,325</td>
<td>55</td>
<td>4.2</td>
</tr>
<tr>
<td>400</td>
<td>200</td>
<td>4940.0</td>
<td>405,549</td>
<td>653,172,905</td>
<td>46</td>
<td>5.5</td>
</tr>
<tr>
<td>300</td>
<td>100</td>
<td>5137.0</td>
<td>422,206</td>
<td>762,233,464</td>
<td>37</td>
<td>7.0</td>
</tr>
</tbody>
</table>
FIGURE 3: USER INTERFACE FOR IDEAL CONSTANT SCHEDULE

<table>
<thead>
<tr>
<th>Reservoir Pressure, psi</th>
<th>Flowing Pressure, psi</th>
<th>GOR, SCF/STB</th>
<th>Oil Production (Np), STB</th>
<th>Gas Production (Gp), SCF</th>
<th>Flow Rate (QL), STB/D</th>
<th>Time, years</th>
</tr>
</thead>
<tbody>
<tr>
<td>1400</td>
<td>1200</td>
<td>445.0</td>
<td>0</td>
<td>0</td>
<td>75</td>
<td>0.0</td>
</tr>
<tr>
<td>1300</td>
<td>1100</td>
<td>420.0</td>
<td>99,827</td>
<td>41,175,080</td>
<td>75</td>
<td>0.9</td>
</tr>
<tr>
<td>1200</td>
<td>1000</td>
<td>677.0</td>
<td>160,319</td>
<td>76,355,311</td>
<td>66</td>
<td>1.6</td>
</tr>
<tr>
<td>1100</td>
<td>900</td>
<td>1319.0</td>
<td>206,180</td>
<td>122,124,158</td>
<td>55</td>
<td>2.3</td>
</tr>
<tr>
<td>1000</td>
<td>800</td>
<td>1781.0</td>
<td>240,040</td>
<td>174,127,585</td>
<td>47</td>
<td>3.2</td>
</tr>
<tr>
<td>900</td>
<td>700</td>
<td>2207.0</td>
<td>271,059</td>
<td>236,469,599</td>
<td>39</td>
<td>4.3</td>
</tr>
<tr>
<td>800</td>
<td>600</td>
<td>2631.0</td>
<td>300,916</td>
<td>300,440,206</td>
<td>33</td>
<td>5.7</td>
</tr>
<tr>
<td>700</td>
<td>500</td>
<td>2991.0</td>
<td>326,819</td>
<td>381,536,133</td>
<td>27</td>
<td>7.5</td>
</tr>
<tr>
<td>600</td>
<td>400</td>
<td>3183.0</td>
<td>354,542</td>
<td>467,115,035</td>
<td>21</td>
<td>10.3</td>
</tr>
<tr>
<td>500</td>
<td>300</td>
<td>4080.0</td>
<td>378,940</td>
<td>555,718,325</td>
<td>17</td>
<td>13.8</td>
</tr>
<tr>
<td>400</td>
<td>200</td>
<td>4940.0</td>
<td>400,549</td>
<td>653,172,905</td>
<td>14</td>
<td>17.8</td>
</tr>
<tr>
<td>300</td>
<td>100</td>
<td>5137.0</td>
<td>422,206</td>
<td>762,233,404</td>
<td>11</td>
<td>22.8</td>
</tr>
</tbody>
</table>
FIGURE 4: USER INTERFACE FOR TRUE CONSTANT SCHEDULE

![User Interface Image]

Western Panda Corporation: Oil Reservoir Performance Prediction

Reservoir Data
- Initial Oil-in-Place, STB: 3224640
- Initial Pressure, psig: 1400
- Thickness of Oil Zones, ft: 44
- Average Porosity, %: 34.2
- Average Permeability, mD: 11.83
- Minimum Spacing, acres: 40

Production Constraints
- Maximum Safe Drawdown, psi: 200
- Allowable Rate, STB/day: 10
- Minimum Flowing Pressure, psi: 100

Reservoir Pressure vs. Flowing Pressure

<table>
<thead>
<tr>
<th>Reservoir Pressure, psi</th>
<th>Flowing Pressure, psi</th>
<th>GOR, SCF/STB</th>
<th>Oil Production (Np), STB</th>
<th>Gas Production (Gp), SCF</th>
<th>Flow Rate (QL), STB/D</th>
<th>Time, years</th>
</tr>
</thead>
<tbody>
<tr>
<td>1400</td>
<td>1200</td>
<td>445.0</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>0.0</td>
</tr>
<tr>
<td>1300</td>
<td>1100</td>
<td>420.0</td>
<td>99,827</td>
<td>43,175,080</td>
<td>10</td>
<td>6.9</td>
</tr>
<tr>
<td>1200</td>
<td>1000</td>
<td>677.0</td>
<td>160,319</td>
<td>76,355,311</td>
<td>9</td>
<td>11.7</td>
</tr>
<tr>
<td>1100</td>
<td>900</td>
<td>1319.0</td>
<td>206,190</td>
<td>122,124,158</td>
<td>7</td>
<td>17.6</td>
</tr>
<tr>
<td>1000</td>
<td>800</td>
<td>1781.0</td>
<td>240,040</td>
<td>174,607,585</td>
<td>6</td>
<td>24.2</td>
</tr>
<tr>
<td>900</td>
<td>700</td>
<td>2207.0</td>
<td>271,059</td>
<td>236,459,599</td>
<td>5</td>
<td>32.5</td>
</tr>
<tr>
<td>900</td>
<td>600</td>
<td>2631.0</td>
<td>300,016</td>
<td>300,446,206</td>
<td>4</td>
<td>42.0</td>
</tr>
<tr>
<td>700</td>
<td>500</td>
<td>2991.0</td>
<td>326,819</td>
<td>381,536,133</td>
<td>4</td>
<td>56.4</td>
</tr>
<tr>
<td>600</td>
<td>400</td>
<td>3183.0</td>
<td>354,542</td>
<td>467,115,035</td>
<td>3</td>
<td>77.0</td>
</tr>
<tr>
<td>500</td>
<td>300</td>
<td>4080.0</td>
<td>378,940</td>
<td>555,716,325</td>
<td>2</td>
<td>103.7</td>
</tr>
<tr>
<td>400</td>
<td>200</td>
<td>4940.0</td>
<td>400,549</td>
<td>653,172,905</td>
<td>2</td>
<td>133.5</td>
</tr>
<tr>
<td>300</td>
<td>100</td>
<td>5137.0</td>
<td>422,206</td>
<td>762,233,404</td>
<td>2</td>
<td>171.2</td>
</tr>
</tbody>
</table>
GRAPH 1: RELATIVE PERMEABILITY
GRAPH 2: ΔP_{wf} VERSUS T

chart to find the end of wellbore storage

δP, psi vs. t, hrs

$t^* = 0.15$
GRAPH 3: SEMI-LOG P_{wf} VERSUS T
GRAPH 4: DAYS REQUIRED FOR DRILLING

Giant Panda
Days Required for Drilling: Discrete Probability Distribution
GRAPH 5: DAYS REQUIRED FOR COMPLETION

Giant Panda
Days Required for Completion: Discrete Probability Distribution
GRAPH 6: CUMULATIVE OIL PRODUCED
GRAPH 7: CUMULATIVE GAS PRODUCED
GRAPH 8: PRESENT VALUE PROFILE

Giant Panda: Sample Net Present Value Profile
GRAPH 9: Rate of Return Probability Distribution

Giant Panda:
Probability Distribution of Anticipated Rate of Return

Rate of Return, %

Probability
GRAPH 10: MAXIMUM SCHEDULE PRESSURE PROFILE

Giant Panda Pressure Profile

- Reservoir Pressure
- Flowing Pressure
GRAPH 11: MAXIMUM OIL SCHEDULE

Oil Rate vs. Time

Time, years

Oil Rate, STB/D

Average Maximum Schedule
GRAPH 12: IDEAL CONSTANT OIL SCHEDULE

Oil Rate vs. Time

Oil Rate, STB

Time, years

Average Maximum Schedule Constant Schedule

75 STB
GRAPH 13: ACTUAL IDEAL CONSTANT OIL SCHEDULE

Oil Rate vs. Time

- **Average Maximum Schedule**
- **Actual 'Constant' Schedule**

- Time, years
- Oil Rate, STB
- Maximum of 250 STB decreasing to 75 STB over 7 years
GRAPH 14: TRUE CONSTANT OIL SCHEDULE

![Graph showing oil rate vs. time for two schedules. The green line represents the average maximum schedule, and the red line represents the actual constant schedule.](image)
GRAPH 15: PRESSURE PROFILE

Giant Panda Pressure Profile

![Graph showing pressure profile over time.](image)
TABLE 1: Fracture Gradient

<table>
<thead>
<tr>
<th>Formation Depth, ft</th>
<th>Thickness, ft</th>
<th>Density, g/cm³</th>
<th>Average Density, g/cm³</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Top 0</td>
<td>138</td>
<td>138</td>
<td>2.69</td>
<td>2.690 Shale</td>
</tr>
<tr>
<td>138</td>
<td>190</td>
<td>52</td>
<td>2.65</td>
<td>2.679 G</td>
</tr>
<tr>
<td>190</td>
<td>238</td>
<td>48</td>
<td>2.65</td>
<td>2.673 G1</td>
</tr>
<tr>
<td>238</td>
<td>287</td>
<td>49</td>
<td>2.65</td>
<td>2.669 G2</td>
</tr>
<tr>
<td>287</td>
<td>332</td>
<td>45</td>
<td>2.65</td>
<td>2.667 K</td>
</tr>
<tr>
<td>332</td>
<td>380</td>
<td>48</td>
<td>2.65</td>
<td>2.665 K1</td>
</tr>
<tr>
<td>380</td>
<td>4428</td>
<td>4048</td>
<td>2.69</td>
<td>2.688 Shale</td>
</tr>
<tr>
<td>4428</td>
<td>4639</td>
<td>211</td>
<td>2.65</td>
<td>2.686 1st Vedder</td>
</tr>
<tr>
<td>4639</td>
<td>4697</td>
<td>58</td>
<td>2.65</td>
<td>2.686 2nd Vedder</td>
</tr>
<tr>
<td>4697</td>
<td>4788</td>
<td>91</td>
<td>2.69</td>
<td>2.686 Shale</td>
</tr>
<tr>
<td>4788</td>
<td>5120</td>
<td>332</td>
<td>2.65</td>
<td>2.683 3rd Vedder</td>
</tr>
</tbody>
</table>

Overburden Stress = 5,951 psiq
Formation Pore Pressure = 2,248 psiq
Fracture Pressure = 3,482 psiq

Fracture Gradient = 13.079 ppg
TABLE 2: CASING DESIGN

Casing Design: Giant Panda Well

<table>
<thead>
<tr>
<th></th>
<th>Production</th>
<th>Surface</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Depth</td>
<td>6120</td>
<td>6120</td>
</tr>
<tr>
<td>Bottomhole Temperature</td>
<td>136</td>
<td>136</td>
</tr>
<tr>
<td>Formation Gradient</td>
<td>0.439 psi/ft</td>
<td>0.439 psi/ft</td>
</tr>
<tr>
<td>Fracture Gradient</td>
<td>13.079 ppg</td>
<td>13.079 ppg</td>
</tr>
<tr>
<td>Drilling Fluid Weight</td>
<td>9.9 ppg</td>
<td>9.9 ppg</td>
</tr>
<tr>
<td>Casing Type</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Casing Outer Diameter</td>
<td>7</td>
<td>9.625 in</td>
</tr>
<tr>
<td>Setting Depth</td>
<td>6,120</td>
<td>900 ft</td>
</tr>
</tbody>
</table>

BURST

<table>
<thead>
<tr>
<th></th>
<th>Production</th>
<th>Surface</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bottomhole Pressure</td>
<td>3,562 psi</td>
<td>620 psi</td>
</tr>
<tr>
<td>Gas Gradient</td>
<td>0.0622 psi/ft</td>
<td>0.0111 psi/ft</td>
</tr>
<tr>
<td>Internal Pressures</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Top</td>
<td>3,244 psi</td>
<td>616 psi</td>
</tr>
<tr>
<td>Bottom</td>
<td>5,587 psi</td>
<td>626 psi</td>
</tr>
<tr>
<td>External Pressures</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Top</td>
<td>0</td>
<td>0 psi</td>
</tr>
<tr>
<td>Bottom</td>
<td>2,248 psi</td>
<td>395 psi</td>
</tr>
<tr>
<td>Resultant Pressures</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Top</td>
<td>3,244 psi</td>
<td>616 psi</td>
</tr>
<tr>
<td>Bottom</td>
<td>3,339 psi</td>
<td>231 psi</td>
</tr>
<tr>
<td>Design Pressures</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Top</td>
<td>3,568 psi</td>
<td>678 psi</td>
</tr>
<tr>
<td>Bottom</td>
<td>3,873 psi</td>
<td>254 psi</td>
</tr>
</tbody>
</table>

Minimum Casing Requirements

<table>
<thead>
<tr>
<th>Grade</th>
<th>J-55</th>
<th>H-40</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal Weight</td>
<td>20</td>
<td>32.3</td>
</tr>
<tr>
<td>Inner Diameter</td>
<td>6.456</td>
<td>0.312</td>
</tr>
<tr>
<td>Internal Pressure Resistance</td>
<td>3,740</td>
<td>2,270</td>
</tr>
</tbody>
</table>

Actual Casing Used

<table>
<thead>
<tr>
<th>Grade</th>
<th>J-55</th>
<th>H-40</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal Weight</td>
<td>23</td>
<td>32.3</td>
</tr>
<tr>
<td>Inner Diameter</td>
<td>6.366</td>
<td>0.901</td>
</tr>
<tr>
<td>Internal Pressure Resistance</td>
<td>4,360</td>
<td>2,270</td>
</tr>
</tbody>
</table>

Used Safety Factor

| **SF** | 1.31 | 9.83 |
COLLAPSE

Internal Pressures
- Top = 0 0 psig
- Bottom = 0 0 psig

External Pressures
- Top = 0 0 psig
- Bottom = 2,343 412 psig

Resultant Pressures
- Top = 0 0 psig
- Bottom = 2,343 412 psig

Design Pressures
- Top = 0 0 psig
- Bottom = 2,577 463 psig

Minimum Casing Requirements
- Grade = J-55 H-40
- Nominal Weight = 23 32.3 #/ft
- Inner Diameter = 8.366 9.001 in
- Collapse Resistance = 3,270 1,370 psi

Actual Casing Used
- Grade = J-55 H-40
- Nominal Weight = 23 32.3 #/ft
- Inner Diameter = 8.366 9.001 in
- Collapse Resistance = 3,270 1,370 psi

Used Safety Factor
- SF = 1.40 3.33

TENSION

Hydrostatic Fluid Pressure = 2,343 412 psig

Metal Area at Bottom = 6.656 9.128 in²

Axial Tension = 102,167 25,311 lb↑

Design Tension = 202,167 125,311 lb↑

Minimum Casing Requirements
- Grade = H-40 H-40
- Nominal Weight = 20 32.3 #/ft
- Inner Diameter = 6.456 9.001 in
- Pipe Body Yield Strength = 230,000 365,000 lb↑

Actual Casing Used
- Grade = J-55 H-40
- Nominal Weight = 23 32.3 #/ft
- Inner Diameter = 8.366 9.001 in
- Pipe Body Yield Strength = 366,000 365,000 lb↑

Used Safety Factor
- SF = 3.58 2.91
TABLE 3: Reserve Estimation

<table>
<thead>
<tr>
<th>Depth, ft</th>
<th>(\rho_b)</th>
<th>(\phi_c)</th>
<th>(\phi_d)</th>
<th>(\phi_r)</th>
<th>(\phi_r')</th>
<th>(\rho_{ID})</th>
<th>(\Omega - m)</th>
<th>(\rho_a)</th>
<th>(\Omega - m)</th>
<th>(F_r)</th>
<th>(R_o)</th>
<th>(Q - m)</th>
<th>(I)</th>
<th>(S_w)</th>
<th>(N), STB acre</th>
</tr>
</thead>
<tbody>
<tr>
<td>4852</td>
<td>2.175</td>
<td>22.0</td>
<td>3.2</td>
<td>30.6</td>
<td>30.3</td>
<td>22.0</td>
<td>0.3</td>
<td>3.760</td>
<td>67.4</td>
<td>0.12</td>
<td>3,462</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4854</td>
<td>2.19</td>
<td>23.9</td>
<td>34.0</td>
<td>31.4</td>
<td>22.5</td>
<td>22.5</td>
<td>7.5</td>
<td>3.314</td>
<td>53.9</td>
<td>0.14</td>
<td>3,511</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4856</td>
<td>2.175</td>
<td>23.8</td>
<td>36.0</td>
<td>32.1</td>
<td>23.0</td>
<td>23.0</td>
<td>7.3</td>
<td>2.360</td>
<td>67.2</td>
<td>0.14</td>
<td>3,609</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4858</td>
<td>2.19</td>
<td>23.9</td>
<td>37.2</td>
<td>33.0</td>
<td>22.3</td>
<td>22.0</td>
<td>6.7</td>
<td>3.279</td>
<td>58.7</td>
<td>0.13</td>
<td>3,714</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4860</td>
<td>2.175</td>
<td>24.8</td>
<td>37.2</td>
<td>33.5</td>
<td>22.7</td>
<td>21.0</td>
<td>6.5</td>
<td>3.221</td>
<td>57.7</td>
<td>0.13</td>
<td>3,762</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2nd Vdel</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>32.2</td>
<td>0.13</td>
<td>18,056</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4730</td>
<td>2.125</td>
<td>32.9</td>
<td>34.5</td>
<td>33.7</td>
<td>2.6</td>
<td>2.0</td>
<td>6.4</td>
<td>0.312</td>
<td>5.6</td>
<td>0.42</td>
<td>2,514</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4732</td>
<td>2.15</td>
<td>31.4</td>
<td>34.0</td>
<td>33.7</td>
<td>4.5</td>
<td>4.5</td>
<td>6.3</td>
<td>0.556</td>
<td>1.7</td>
<td>0.26</td>
<td>2,883</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4734</td>
<td>2.16</td>
<td>33.7</td>
<td>35.0</td>
<td>32.9</td>
<td>4.5</td>
<td>4.5</td>
<td>6.3</td>
<td>0.364</td>
<td>1.9</td>
<td>0.20</td>
<td>3,017</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4736</td>
<td>2.17</td>
<td>34.5</td>
<td>35.0</td>
<td>32.8</td>
<td>3.8</td>
<td>3.8</td>
<td>6.1</td>
<td>0.337</td>
<td>1.3</td>
<td>0.33</td>
<td>3,168</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4738</td>
<td>2.15</td>
<td>31.4</td>
<td>36.0</td>
<td>33.2</td>
<td>3.7</td>
<td>3.7</td>
<td>6.3</td>
<td>0.557</td>
<td>10.0</td>
<td>0.32</td>
<td>2,932</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4802</td>
<td>2.125</td>
<td>32.9</td>
<td>36.0</td>
<td>34.0</td>
<td>3.5</td>
<td>3.5</td>
<td>6.0</td>
<td>0.554</td>
<td>9.9</td>
<td>0.32</td>
<td>2,998</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3rd Vdel</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>35.5</td>
<td>0.32</td>
<td>17,516</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4813</td>
<td>2.125</td>
<td>32.9</td>
<td>39.0</td>
<td>38.0</td>
<td>2.2</td>
<td>2.5</td>
<td>5.5</td>
<td>0.449</td>
<td>8.0</td>
<td>0.32</td>
<td>3,008</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4812</td>
<td>2.1</td>
<td>33.9</td>
<td>39.0</td>
<td>36.1</td>
<td>2.6</td>
<td>2.8</td>
<td>5.4</td>
<td>0.516</td>
<td>9.2</td>
<td>0.32</td>
<td>3,611</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4814</td>
<td>2.1</td>
<td>33.9</td>
<td>38.0</td>
<td>35.9</td>
<td>2.1</td>
<td>2.1</td>
<td>5.5</td>
<td>0.375</td>
<td>6.7</td>
<td>0.36</td>
<td>2,856</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4813</td>
<td>2.0</td>
<td>43.2</td>
<td>40.1</td>
<td>41.0</td>
<td>1.8</td>
<td>1.8</td>
<td>4.1</td>
<td>0.386</td>
<td>7.1</td>
<td>0.36</td>
<td>3,233</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4813</td>
<td>2.05</td>
<td>37.7</td>
<td>39.0</td>
<td>38.3</td>
<td>2.1</td>
<td>2.1</td>
<td>4.3</td>
<td>0.431</td>
<td>7.7</td>
<td>0.36</td>
<td>3,711</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4823</td>
<td>2.1</td>
<td>32.0</td>
<td>33.6</td>
<td>35.6</td>
<td>2.6</td>
<td>5.8</td>
<td>6.0</td>
<td>0.403</td>
<td>7.2</td>
<td>0.37</td>
<td>2,618</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4822</td>
<td>2.14</td>
<td>32.0</td>
<td>34.0</td>
<td>33.0</td>
<td>3.5</td>
<td>5.5</td>
<td>6.7</td>
<td>0.521</td>
<td>0.3</td>
<td>0.33</td>
<td>2,868</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4824</td>
<td>2.05</td>
<td>37.7</td>
<td>33.0</td>
<td>35.3</td>
<td>4.5</td>
<td>4.5</td>
<td>5.3</td>
<td>0.375</td>
<td>13.9</td>
<td>0.27</td>
<td>3,341</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4823</td>
<td>1.9</td>
<td>47.1</td>
<td>33.0</td>
<td>38.3</td>
<td>6.5</td>
<td>6.5</td>
<td>4.5</td>
<td>1.349</td>
<td>24.1</td>
<td>0.26</td>
<td>3,888</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4873</td>
<td>2.125</td>
<td>37.9</td>
<td>33.0</td>
<td>31.5</td>
<td>5.5</td>
<td>5.5</td>
<td>7.6</td>
<td>0.373</td>
<td>15.6</td>
<td>0.26</td>
<td>3,808</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4812</td>
<td>2.1</td>
<td>34.5</td>
<td>31.6</td>
<td>34.8</td>
<td>7.0</td>
<td>7.0</td>
<td>6.3</td>
<td>1.104</td>
<td>20.8</td>
<td>0.22</td>
<td>3,509</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>min</td>
<td>4238</td>
<td>2.5</td>
<td>0.4</td>
<td>10.0</td>
<td>2.7</td>
<td>0.7</td>
<td>0.7</td>
<td>1.26</td>
<td>0.366</td>
<td>1.0</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Pay Zone</td>
<td>34.2</td>
<td>0.27</td>
<td>60,516</td>
<td>0.16</td>
<td>3.46</td>
<td>58.7</td>
<td>3.31</td>
<td>1.34</td>
<td>24.1</td>
<td>0.26</td>
<td>3.888</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TABLE 4: INVESTMENT DETERMINATION

<table>
<thead>
<tr>
<th>Investment</th>
<th>Cost</th>
<th>Days</th>
<th>$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supervision</td>
<td>450</td>
<td>10.48</td>
<td>4,717.37</td>
</tr>
<tr>
<td>Rig Rate</td>
<td>1,000</td>
<td>10.48</td>
<td>10,483.03</td>
</tr>
<tr>
<td>Misc. Tools</td>
<td>500</td>
<td></td>
<td>500.00</td>
</tr>
<tr>
<td>Perf Charges</td>
<td>500</td>
<td></td>
<td>500.00</td>
</tr>
<tr>
<td>Other Perf Charges</td>
<td>200</td>
<td></td>
<td>200.00</td>
</tr>
<tr>
<td>Drilling Fluids</td>
<td>1,000</td>
<td></td>
<td>1,000.00</td>
</tr>
<tr>
<td>Contract Drilling</td>
<td>1,200</td>
<td>8.33</td>
<td>9,992.81</td>
</tr>
<tr>
<td>Well Supplies</td>
<td>3,500</td>
<td></td>
<td>3,500.00</td>
</tr>
<tr>
<td>Transportation</td>
<td>1,500</td>
<td></td>
<td>1,500.00</td>
</tr>
<tr>
<td>Drillstring</td>
<td>4,000</td>
<td></td>
<td>4,000.00</td>
</tr>
<tr>
<td>Other Rentals</td>
<td>8,500</td>
<td></td>
<td>8,500.00</td>
</tr>
<tr>
<td>Other Subsurface</td>
<td>3,000</td>
<td></td>
<td>3,000.00</td>
</tr>
<tr>
<td>Casing, Tubing, Rods</td>
<td>9,500</td>
<td></td>
<td>9,500.00</td>
</tr>
<tr>
<td>Logging</td>
<td>25,000</td>
<td></td>
<td>25,000.00</td>
</tr>
<tr>
<td>Facilities</td>
<td>10,000</td>
<td></td>
<td>10,000.00</td>
</tr>
</tbody>
</table>

(Kalicized - Cost per day)

<table>
<thead>
<tr>
<th></th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Facilities</td>
<td>$10,000</td>
</tr>
<tr>
<td>WWO Tan</td>
<td>$9,500</td>
</tr>
<tr>
<td>WWO Int</td>
<td>$72,893</td>
</tr>
<tr>
<td>Subtotal</td>
<td>$92,393</td>
</tr>
<tr>
<td>G&A Facilities</td>
<td>$1,300</td>
</tr>
<tr>
<td>G&A Wells</td>
<td>$1,235</td>
</tr>
<tr>
<td>TOTAL</td>
<td>$94,928</td>
</tr>
</tbody>
</table>
TABLE 5: Economic Analysis

| Time, market | Production per Thresh. | Thresh. Workers | Investment, thres. | Operating Cost | Revenue, thres. | NPV 1%, thres. | NPV 5%, thres. | NPV 10%, thres. | NPV 15%, thres. | NPV 20%, thres. | NPV 25%, thres. | NPV 30%, thres. | NPV 40%, thres. | NPV 50%, thres. | NPV 60%, thres. | NPV 70%, thres. | NPV 80%, thres. | NPV 90%, thres. |
|--------------|-----------------------|-----------------|-------------------|---------------|----------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|
| 0 | 142 | 35.7 | 356.71 | 938.33 | 198,800 | 746,915 | 1,125,418 | 1,621,921 | 2,132,071 | 2,653,071 | 3,184,071 | 3,715,071 | 4,246,071 | 4,777,071 | 5,308,071 | 5,839,071 |
| 1 | 22,000 | 20,600 | 20,600 | 20,600 | 20,600 | 20,600 | 20,600 | 20,600 | 20,600 | 20,600 | 20,600 | 20,600 | 20,600 | 20,600 | 20,600 | 20,600 | 20,600 |
| 10,000 | 35.71 | 356.71 | 938.33 | 198,800 | 746,915 | 1,125,418 | 1,621,921 | 2,132,071 | 2,653,071 | 3,184,071 | 3,715,071 | 4,246,071 | 4,777,071 | 5,308,071 | 5,839,071 | 6,370,071 |
| 20,000 | 35.71 | 356.71 | 938.33 | 198,800 | 746,915 | 1,125,418 | 1,621,921 | 2,132,071 | 2,653,071 | 3,184,071 | 3,715,071 | 4,246,071 | 4,777,071 | 5,308,071 | 5,839,071 | 6,370,071 |
| 30,000 | 35.71 | 356.71 | 938.33 | 198,800 | 746,915 | 1,125,418 | 1,621,921 | 2,132,071 | 2,653,071 | 3,184,071 | 3,715,071 | 4,246,071 | 4,777,071 | 5,308,071 | 5,839,071 | 6,370,071 |
| 40,000 | 35.71 | 356.71 | 938.33 | 198,800 | 746,915 | 1,125,418 | 1,621,921 | 2,132,071 | 2,653,071 | 3,184,071 | 3,715,071 | 4,246,071 | 4,777,071 | 5,308,071 | 5,839,071 | 6,370,071 |
| 50,000 | 35.71 | 356.71 | 938.33 | 198,800 | 746,915 | 1,125,418 | 1,621,921 | 2,132,071 | 2,653,071 | 3,184,071 | 3,715,071 | 4,246,071 | 4,777,071 | 5,308,071 | 5,839,071 | 6,370,071 |
| 60,000 | 35.71 | 356.71 | 938.33 | 198,800 | 746,915 | 1,125,418 | 1,621,921 | 2,132,071 | 2,653,071 | 3,184,071 | 3,715,071 | 4,246,071 | 4,777,071 | 5,308,071 | 5,839,071 | 6,370,071 |
| 70,000 | 35.71 | 356.71 | 938.33 | 198,800 | 746,915 | 1,125,418 | 1,621,921 | 2,132,071 | 2,653,071 | 3,184,071 | 3,715,071 | 4,246,071 | 4,777,071 | 5,308,071 | 5,839,071 | 6,370,071 |
| 80,000 | 35.71 | 356.71 | 938.33 | 198,800 | 746,915 | 1,125,418 | 1,621,921 | 2,132,071 | 2,653,071 | 3,184,071 | 3,715,071 | 4,246,071 | 4,777,071 | 5,308,071 | 5,839,071 | 6,370,071 |
| 90,000 | 35.71 | 356.71 | 938.33 | 198,800 | 746,915 | 1,125,418 | 1,621,921 | 2,132,071 | 2,653,071 | 3,184,071 | 3,715,071 | 4,246,071 | 4,777,071 | 5,308,071 | 5,839,071 | 6,370,071 |

Note: The table shows the economic analysis for a specific market over time, including production, revenue, and net present value (NPV) under different discount rates.
LOG 1: INDUCTION LOG
PROGRAM: OIL PERFORMANCE PREDICTION

Option Explicit
Private n As Double, pi As Double, ho As Double, hg As Double
Private por As Double, ka As Double
Private dp As Double, all As Double, pmin As Double, spacing As Double

Private p(30), rn(30), r1(30), q(30)
Private np(30), gp(30), dnp(30), dgp(30), gp1(20)
Private rs(30), bo(30), bg(30), yo(30), yg(30)
Private roo(30), rog(30)
Private sg(30), kgo(30), ko(30), s(30), kog(30), kfr(30)

Private i As Integer, j As Integer
Private time(30) As Double

Private Sub cmdrun_Click()
Dim v1 As Double, v2 As Double, v3 As Double
Dim boi, rsi, bgi, so As Double
Dim g As Double, swo As Double, sl As Double, sgl As Double
Dim flag1 As Boolean, Flag2 As Boolean

mnuperm_Click
mnupvt_Click
DoEvents
boi = bo(1): bgi = bg(1)
np(1) = 0: gp(1) = 0: g = 0
swo = 25
q(1) = all
For i = 2 To 14
rn(i) = rs(i)
Do
v1 = n * (bo(i) - boi + (rsi - rs(i)) * bg(i))
v2 = bg(i) * (gp(i-1) - (rn(i) + rn(i-1)) / 2 * np(i-1))
np(i) = (v1 + g * (bg(i) - bgi) - v2) / v3
gp(i) = (rn(i) + rn(i-1)) / 2 * (np(i) - np(i-1)) + gp(i-1)
so = (1 - swo / 100) * (1 - np(i) / n) * bo(i) / boi
sgl = 1 - sl
For j = 1 To 9 Step 1
If (sgl >= sg(j) / 100) And (sgl < sg(j+1) / 100) Then
kog(i) = (kgo(j+1) - kgo(j)) * (sgl - sg(j) / 100) / (sg(j+1) / 100 - sg(j) / 100) + kgo(j)
Exit For
End If
Next
If kfr(i) = 0 Then kfr(i) = 1
q(i) = all * kfr(i) / yo(i) / bo(i) / (1 / yo(1) / boi)
dnp(i) = np(i) - np(i-1)
Next
dp = 250
If kfr(i) = 0 Then kfr(i) = 1
q(i) = all * kfr(i) / yo(i) / bo(i) / (1 / yo(1) / boi)
dnp(i) = np(i) - np(i-1)
\[r_{n1}(i) = r_{s}(i) + k_{og}(i) \cdot y_{o}(i) / y_{g}(i) \cdot b_{o}(i) / b_{g}(i) \]

Loop Until Abs(r(i) - r_{n1}(i)) < 10

Exit For

End If

Next

With grddata
 For i = 1 To 12
 .TextMatrix(i, 0) = Format(p(i), "0")
 .TextMatrix(i, 1) = Format(p(i) - 200, "0")
 .TextMatrix(i, 2) = Format(r(i), "0.0")
 .TextMatrix(i, 3) = Format(np(i), ",##0")
 .TextMatrix(i, 4) = Format(gp(i), ",##0")
 .TextMatrix(i, 5) = Format(q(i), "0")
 .TextMatrix(i, 6) = Format(time(i), "0.0")
 Next
End With

Open "a:\results.dat" For Output As #3
For i = 1 To 12 Step 1
 Print #3, p(i), r(i), np(i), gp(i), q(i), gp1(i), time(i)
Next
Close #3

End Sub

Private Sub Form_Load()
 readoildata

 With grddata
 .RowHeight(0) = 500
 .WordWrap = True
 .Col = 0
 For i = 0 To 6
 .Row = i
 .ColWidth(i) = 1260
 .ColAlignment(i) = 5
 Next
 .Row = 5: .ColWidth(5) = 950
 .Row = 0
 .Col = 0: .Text = "Reservoir Pressure, psi"
 .Col = 1: .Text = "Flowing Pressure, psi"
 .Col = 2: .Text = "GOR, SCF/STB"
 .Col = 3: .Text = "Oil Production (Np), STB"
 .Col = 4: .Text = "Gas Production (Gp), SCF"
 .Col = 5: .Text = "Flow Rate (Q), STB/D"
 End With

End Sub

Public Sub readoildata()

 n = Val(txtn.Text)
 pi = Val(txtpi.Text)
 ho = Val(txtho.Text)
por = Val(txtpor.Text)
ka = Val(txtka.Text)
dp = Val(txtmsdp.Text)
all = Val(txtall.Text)
spacing = Val(txtspace.Text)

End Sub

Private Sub mnupvt_Click()
Dim count1 As Integer
Open "a:\pvtfile.txt" For Input As #1
count1 = 0
i = 1
Do While Not EOF(1)
Input #1, p(i), bo(i), rs(i), bg(i), yo(i), yg(i), roo(i), rog(i)
count1 = count1 + 1
i = i + 1
Loop
Close #1
End Sub

Private Sub mnuexit_Click()
End
End Sub