Group Members

- **Group Leader**
 - Jason Miller
 - Introduction
 - Results
 - Conclusion

- **Other Members**
 - Michael Bayne
 - Discussing Sketches
 - Ryan Clark
 - Building of prototype and Build, Document and Test
 - Justin Morris
 - Objectives, Brainstorming, and Gather Information
 - Melissa Morris
 - Revisions and Venn Diagram
The Design of a Catapult

Eers2
Team Five
Introduction

- Problem
 - Propelling a 50 gram object 3 meters and striking a 3 inch diameter bulls eye with a catapult whose dimensions do not exceed 1.5’X1.5’X1.5’.
Methodology
Define the Overall Objectives

- Launch a golf ball weighing 50 grams 3 meters
- Consistently hit bulls eye on target
- Fit inside a 1.5’X1.5’X1.5’ box
- Account for safety
- Apply trigger mechanism
Choose A Design Strategy

- Brainstorming
 - Make maximum dimensions
 - Wood and PVC pipe
 - Spring or Bungee
 - Counter-weights
 - Independent stop-bar
Gather Information

- Materials Needed
- Tools Needed
- Locate Work Area
- Discuss Possible Designs
Make a First Cut at the Design

Sketches and notes:
- Frame to replace with two 2.5x1.5 at 45° cuts
- Golf ball, squash ball cut in half
- Tennis ball
- Lock loop
Building the Catapult
Build, Document, and Test Prototype
Revise and Revise Again!

- **Initial Design**
 - Plywood base
 - Non-Adjustable Arm
 - Spring
 - Frame held with screws
 - Arm resting on cross bar

- **Revised Design**
 - Solid Poplar Board
 - Added adjustments
 - Bungee cord
 - Reinforced base with dowel rods
 - Arm has bushing insert
Test The Finished Product

- Accuracy
- Precision
- Visual Appeal
- Safety
Design Cycle

Brainstorming:
* springs/counterweights
* final-metal base (steel)
* final-paint
* normal PVC pipe
* rubber tubing
* idea of stop bar

Prototype:
* plywood base
* 2x4's as frame
* cup (half racquet ball inside half tennis ball)
* long bolt (hold arm)
* bungee cord
* electrical PVC pipe
* dowel rod (stop bar)
* 2 eye screws (trigger)

Final Design:
* stained
* thick poplar base
* routed the edges
* arm adjustable (drilled multiple holes in arm)
Results
Testing Results

<table>
<thead>
<tr>
<th></th>
<th>Trial One</th>
<th></th>
<th>Trial Two</th>
<th></th>
<th>Trial Three</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shot One</td>
<td>90</td>
<td>Shot One</td>
<td>80</td>
<td>Shot One</td>
<td>90</td>
</tr>
<tr>
<td>Shot Two</td>
<td>80</td>
<td>Shot Two</td>
<td>80</td>
<td>Shot Two</td>
<td>80</td>
</tr>
<tr>
<td>Shot Three</td>
<td>80</td>
<td>Shot Three</td>
<td>100</td>
<td>Shot Three</td>
<td>90</td>
</tr>
<tr>
<td>Total</td>
<td>250</td>
<td>Total</td>
<td>260</td>
<td>Total</td>
<td>260</td>
</tr>
</tbody>
</table>
Accuracy and Precision

Results from Three Trials

1 hit
3 hits
5 hits
Conclusion

- We found that in order to propel a 50 gram object 3 meters and strike a 3 inch diameter bulls eye with a catapult whose dimensions do not exceed 1.5’X1.5’X1.5’ we had to overcome many engineering processes.